SMALL MILLETS
IN
GLOBAL AGRICULTURE

Proceedings of the First International
Small Millets Workshop
Bangalore, India, October 29-November 2, 1986

Editors:

A. Seetharam
K.W. Riley
G. Harinarayana

OXFORD & IBH PUBLISHING CO. PVT. LTD.
New Delhi Bombay Calcutta
CONTENTS

Editor's Preface
Inaugural Address: M.V. Rao
Workshop Participants and Authors

I: OVERVIEW AND TAXONOMY

1. Small Millets—A Selective Overview
 Hugh Doggett
 3

2. Origin, Evolution and Systematics of Minor Cereals
 J.M.J. de Wet
 19

II: IMPORTANCE, GERMPLASM AND VARIETAL IMPROVEMENT IN ASIA

3. Small Millets in Indian Agriculture
 T.V. Sampath, S.M. Razvi, D.N. Singh and K.V. Bondale
 33

4. Genetic Resources of Small Millets in India
 A. Seetharam
 45

5. Breeding and Varietal Improvement of Small Millets in India
 G. Harinarayana
 59

6. Importance, Genetic Resources and Breeding of Small Millets in Bangladesh
 M.A. Majid, M.A. Hamid and Mannujan
 71

7. Importance, Genetic Resources and Breeding of Small Millets in Sri Lanka
 S. Ponnuthurai
 77

8. Importance, Genetic Resources and Varietal Improvement of Finger Millet in Nepal
 Kishor Sherchan
 85

9. Importance and Genetic Resources of Small Millets with Emphasis on Foxtail Millet (Setaria italica) in China
 Chen Jiaju
 93
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Breeding and Varietal Improvement of Foxtail Millet in China</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Chen Jiaju</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Breeding of Proso Millet (Panicum miliaceum L.) in Volga Region of USSR</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>V.A. Ilyin and E.N. Zolotukhin</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>IMPORTANCE, GERMPLASM AND VARIETAL IMPROVEMENT IN AFRICA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Finger Millet Research in the SADCC (Southern African) Region</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>S.C. Gupta, S. Appa Rao and L.R. House</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Small Millets in Uganda Agriculture</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Bill Williams Khizzah</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Finger Millet Improvement in Uganda</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Vincent Makumbi Zake and Bill Williams Khizzah</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Importance, Genetic Resources and Breeding of Small Millets in Kenya</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>C. Mburu</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Finger Millet Research in the Southern Highlands of Tanzania</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>R.O.F. Mwambene</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Importance, Genetic Resources and Breeding of Small Millets in Zimbabwe, with Emphasis on Finger Millet</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>F.R. Muza</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Production Trends, Germplasm Resources, Breeding and Varietal Improvement of Small Millets, with Special Emphasis on Teff in Ethiopia</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Seyfu Ketema</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Improvement of Finger Millet (Eleusine coracana) in Ethiopia</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Yilma Kebede and Abebe Menkir</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>PHYSIOLOGY, CROPPING SYSTEMS, PRODUCTION TECHNOLOGY AND PESTS AND DISEASES IN ASIA</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Physiological Approaches for Improving Productivity of Finger Millet under Rainfed Conditions</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>M. Udaya Kumar, V.K. Sashidhar and T.G. Prasad</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>21.</td>
<td>Cropping Systems and Production Technology for Small Millets in India</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>B.R. Hegde and B.K. Linge Gowda</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Diseases of Small Millets and Their Management in India</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>S. Viswanath and A. Seetharam</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Insect Pests of Small Millets and Their Management in India</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>T.K. Murthi and G. Harinarayana</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Cropping Systems, Production Technology, Pests, Diseases and</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Utilization of Small Millets in Bangladesh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.A. Majid, M.A. Hamid and Mannujan</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Cropping Systems, Production Technology, Pests, Diseases of Finger</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Millet in Nepal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deep Man Sakya</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Cropping Systems, Production Technology, Pests, Diseases and</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Utilization of Small Millets in Sri Lanka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Ponnuthurai</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Cropping Systems, Production Technology, Pests and Diseases of Foxtail</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Millet in China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chen Jiaju</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISEASES OF SMALL MILLETS IN AFRICA</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Cropping Systems, Production Technology, Pests and Diseases of Finger</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Millet in Uganda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J.P.E. Esele</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Cropping Systems, Production Technology, Pests, Diseases and</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Utilization of Small Millets in Zimbabwe with Special Reference to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finger Millet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.R. Musa</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Cropping Systems, Production Technology and Utilization of Small</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Millets with Special Reference to Finger Millet in Kenya</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Mburu</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Cropping Systems, Production Technology, Pests, Diseases, Utilization</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>and Forage Use of Millets with Special Emphasis on Teff in Ethiopia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seyfu Ketema</td>
<td></td>
</tr>
</tbody>
</table>
 R.O.F. Mwambene

VI : FOOD AND FODDER USES

33. Utilization of Small Millets in Andhra Pradesh (India)
 P. Pushpamma

34. Processing of Small Millets for Food and Industrial Uses
 N.G. Malleshi

35. Scope for Using Small Millets as Forage in India
 S.R. Sampath

36. Utilization of Small Millets in China
 Chen Jiaju

37. Processing and Utilization of Finger Millet in Uganda
 J.P.E. Esele

VII : DISCUSSIONS AND RECOMMENDATIONS

General Index

Index of Scientific Names
EDITORS' PREFACE

The transformation of agriculture to more productive systems has often been accompanied by increased production of a fewer crops species. Concurrently, the area and production of a great diversity of traditional crops have declined. Yet in many parts of the world, these traditional crops play an important role in maintaining stable and sustainable forms of agriculture.

One such traditional group of cereal crops is the small millets. This group includes finger millet (*Eleusine coracana*), foxtail millet (*Setaria italica*), little millet (*Panicum miliare*), proso millet (*Panicum miliaceum*), kodo millet (*Paspalum scrobiculatum*), barnyard millet (*Echinochloa colosna*), fonio (*Digitaria exilis*), and teff (*Eragrostis tef*).

Although precise estimates on area and production of small millets are not available, these crops may occupy between 18 and 20 million hectares, producing 15-18 million tonnes of grain. The regionwise distribution of area is 6.5 m ha in South Asia, 5 m ha in China, 4 m ha in USSR and 3 m ha in Africa. Finger millet is the principal small millet species grown in South Asia, followed by kodo millet, foxtail millet, little millet, proso millet and barnyard millet in that order. Foxtail millet and proso millet are important in China and proso millet is grown extensively in southwestern USSR. In Africa, finger millet, teff and fonio have local importance. Some small millets are grown in United States and Europe on a very limited scale.

Small millets are grown in arid, semi-arid or montane zones as rainfed crops, under marginal and submarginal conditions of soil fertility and moisture. Even so, it should be appreciated that their average grain yield is almost a tonne per ha. Presently, small millets are cultivated in areas where they produce a more dependable harvest compared with any other crop. This has been largely responsible for their continued presence and cultivation in many parts of the world. There is now an increasing realization of this fact, and a greater awareness that these crops merit more research and development.

As a response to this need, the Indian Council of Agricultural Research, New Delhi, India, University of Agricultural Sciences, Bangalore, India, and the International Development Research Centre, Canada, jointly organized the first International Workshop on Small Millets, in October 1986, at Bangalore, India.

The purpose of the workshop was to bring together scientists working on these millets, from countries where these crops are important; to assess the importance, production, and the place of these crops in traditional and im-
proved agricultural systems; to discuss the status of research on these crops and explore ways to collaborate in strengthening millet research. Over 50 scientists from India, Bangladesh, Nepal, Sri Lanka, China, USSR, Ethiopia, Kenya, Zimbabwe, the ICRISAT SADCC Program, Tanzania, Uganda and IDRC attended. Sessions on production trends, genetic resources, breeding, cropping systems and production technology, physiology, food and forage uses were held. There was discussion following each session, and a great deal of information was exchanged, both formally and informally.

This volume contains the proceedings of that workshop, arranged into seven chapters:

- Overview and Taxonomy of Small Millets
- Importance, Germplasm Resources and Varietal Improvement in Asia
- Importance Germplasm Resources and Varietal Improvement in Africa.
- Physiology, Cropping Systems and Production Technology in Asia.
- Physiology, Cropping Systems and Production Technology in Africa.
- Food and Forage Uses.
- Discussion and Recommendations.

Two papers: “Origin Evolution, and Systematics of Minor Cereals” by J.M.J. de Wet, and “Improvement of Finger millet (Eleusine coracana) in Ethiopia” by Yilma Kebede and Abebe Menkir, which were written after the workshop, are also included.

During the final day of the workshop, it was recommended that an International Small Millets Network be formed, to help strengthen research on small millets.

This volume, brings together, perhaps for the first time, information from the scientists actively working to improve the small millets in Africa and Asia. It is hoped that this information will be of use not only to the scientists in the newly formed network, but to all those interested in the role of traditional crops in enhancing sustainability, stability as well as the productivity of agricultural systems.

Our appreciation is extended to Dr. M.V. Rao for his inaugural address, Dr. S.V. Patel, Vice Chancellor, University of Agricultural Sciences, and Mr. V.G. Pande, Regional Director, IDRC, for their opening remarks. To Dr K. Krishnamurthy, Director of Research, University of Agricultural Sciences, goes the credit for the excellent organization of the workshop.

A. SEETHARAM
Co-ordinator, All India Co-ordinated Small Millets Improvement Project
Bangalore

K.W. RILEY
International Development Research Centre
New Delhi

G. HARINARAYANA
Co-ordinator, All India Co-ordinated Pearl Millet Improvement Project
Pune
1. Foxtail millet (Setaria italica)

2. Barnyard millet (Echinochloa colona)
3. Proso millet (Panicum miliaceum)
4. Kodo millet (Paspalum scrobiculatum)
5. Dehulling of small millets

6. Little millet (*Panicum miliare*)
7. Finger millet (*Eleusine coracana*)

8. Evaluation of finger millet germplasm in Nepal. High straw yields in these tall land races are valued for feeding livestock.
INAUGURAL ADDRESS

THE SMALL MILLETS: THEIR IMPORTANCE, PRESENT STATUS AND OUTLOOK

M. V. Rao
Deputy Director General (Crops)
Indian Council of Agricultural Research
New Delhi

Mils are small grained cereals, the smallest of them include finger, kodo, foxtail, proso, little and barnyard millets. They are the staple food of the millions inhabitating the arid and semiarid tropics of the world. They are distributed in most of the Asian and African countries and parts of Europe. The grains of small millets, being nutritionally superior to rice and wheat, provide cheap proteins, minerals and vitamins to poorest of the poor where the need for such ingredients is the maximum. Practically devoid of grain storage pests, the small millets have indefinite storage life. The untapped grain yield potential coupled with nutritional superiority makes the small millets potential future food crops particularly in the more difficult rainfed areas.

Small millets in India occupy 4.5 per cent of the cultivated area and are confined to vast stretches of drylands and hilly tracks. The area under finger millet has been more or less stable around 2.6 million hectares while the area under other small millets has shown gradual decline from 5.6 million hectares in 1954-55 to 3.6 million hectares during 1983-84. The productivity of finger millet is the highest among the millets, at 1150 kg/ha during 1983-84. However, the productivity of other small millets has remained around 450 kg/ha. The lower productivity of small millets is largely due to poor fertility of soils and non-adoption of improved package of cultivation. Nevertheless, these crops do have large hidden production potential which could be exploited by judicial blending of varietal, production and protection technologies. These crops respond very well even to small doses of inorganic fertilizers and other crop management inputs which do not involve additional expenditure, such as sowing at optimum time, maintenance of adequate plant stand, timely weeding and intercultivation.
Though the crop improvement work on small millets in India under the co-ordinated programme started in 1964, the launching of a separate co-ordinated millet improvement project in 1969 helped in giving greater attention to these crops with a few centres established in different states for specific millets. Five crop specific lead centres were established in 1978-79 with IDRC assistance; at Dholi in Bihar for proso millet, Dindori in Madhya Pradesh for kodo millet, Nandyal in Andhra Pradesh for foxtail millet, Semiliguda in Orissa for little millet, and at Almora in Uttar Pradesh for barnyard millet. The establishment of these centres have greatly assisted in building the necessary infrastructure and manpower for these crops. These efforts have started bearing fruit and many new technologies and varieties are now undergoing critical evaluation in different parts of the country. The major goal during the Seventh Five-Year Plan is to further consolidate the outcome of these research efforts and stabilize the productivity of small millets at a higher level. As an important step in this direction a separate All India-Co-ordinated Small Millets Improvement Project has been launched in the Seventh Plan in 1986 with the following objectives.

1. Diversification of the varietal base by evolving high yielding, disease resistant and widely adaptable genotypes in various small millets.

3. Identification of ideal crop mixtures and evolving production systems involving pulses and oilseeds as component crops.

4. Intensification of research on plant health and evolution of cheap and efficient plant protection methods.

5. To identify alternate uses for grain in poultry, dairy and in agro-based industries to enhance their economic value.

The above objectives can be achieved only through more research in various disciplines backed up with efforts on transfer of technology. For stabilizing production of small millets the following aspects deserve high priority.

1. Strengthening of both basic and applied research.

2. Identification and utilization of technologies generated from basic and applied research.

3. Quick transfer of technology to the farmer’s field for extension.

Small millets received less priority in the agricultural development in the past both at National and International level as evidenced by the fact that none of the existing International Institutes is endeavouring for the improvement of any of the small millets. This is so in spite of the fact that these crops occupy more than 25 million hectares at global level. Small millets not only have been less researched but also have received negligible developmental support. The scientists who have gathered here in the First International Workshop on small millets may kindly take note of these facts in their delibera-
tions and come out with suitable recommendations for removing these imbalances. Some of the topics which need specific attention are:

1. Small millets possess a wealth of genetic diversity—India has assembled more than 9,000 collections of small millets at Bangalore, the headquarters of the Small Millets Improvement Project. Similarly China maintains a rich source of foxtail millet germplasm; USSR, has excellent proso millet collections. Africa has also assembled teff in Ethiopia, finger millet in Kenya and Uganda; The International Crop Research Institute (ICRISAT), Hyderabad, India also has built up one of the largest and diverse collections of small millets. However, there are many areas in India as well as in other countries still unexplored and there is an urgent need to retrieve the genetic diversity under natural conditions. This acquires significance in countries which are faced with chronic drought. The efforts of Ethiopian scientists in this regard are commendable. Besides cultivated land races there is a need to collect related wild species also. Further, an up to date inventory of all the available germplasm should be prepared and made available to all small millets researchers to facilitate quick and need based exchange of germplasm.

2. Small millets are highly self-fertilized crops and pure line selection has been primarily used to improve the performance of land races. Quite often the farmer himself has selected varieties in his own way in his fields. Hybridization, however, offers immense potential for combining the desirable features. Contact, hot water and gametocide methods have been used in hybridization with certain amount of success in these crops. The smallness of the spikelets and their delicate nature have been hindering hand emasculation. There is an urgent need to standardize hybridization techniques for changing the genetic background of the local cultivars. The discovery of male sterility in foxtail millet in China augures well for the improvement of this crop. Similar mechanisms and also mechanisms like protogyny which promote cross pollination need to be looked for in other small millets.

3. Traditionally small millets are the constituents of dryland farming system. However, they also respond to irrigation. Therefore there is an immediate need to select genotypes for better water use efficiency.

4. Small millets are low input crops and often grown in infertile depleted soils. Obviously they respond remarkably to fertilizer management. This further demands identification of genotypes which have high fertilizer use efficiency particularly nitrogen whether it is native or applied.

5. Small millets are vulnerable to different spectrum of field pests and diseases. Finger millet is more vulnerable to diseases like blast and viruses and barnyard millet to smuts. Little and proso millets are more susceptible to pests like shootfly while borers occur on finger and barnyard millet. The incorporation of genetic resistance offers the best choice in low input crops like small millets. Cultural controls like early planting and appropriate cropping systems
could also reduce pest and disease incidence. These methods in addition to cheap chemical control methods deserve attention.

6. Small millets are the staple food of the poor and the working classes and hence their health depends on the quality of food consumed. Any improvement made in nutritive quality of small millet grain would indirectly help in bettering the general health of the rural people. So, quality breeding to improve the protein content, mineral composition and aminoacid balance should be given due priority. Quality specific genotypes can also be bred in order to widen consumer base to offer a choice of foods and to augment industrial uses of small millets. The manufacture of value added products from small millets will help to upgrade not only the economic status of growers and also their investment resource base.

7. Small millets are generally cooked like rice. They also find their way to the local specific sweets and savouries. Small millets, however, can be used as substitutes to wheat and rice in the food products. They could also be processed into new foods suitable to infants and invalids alike after necessary fortification. Bread could be prepared from finger millet for diabetics and it can also be used in many bakery products. Most small millets could be popped or flaked.

8. As small millets are well protected in glume encasements the processing of the grain to usable form is not only time consuming but also labour intensive. There is therefore a need to develop post-harvest processing technology in order to reduce human drudgery.
WORKSHOP PARTICIPANTS AND AUTHORS

Dr. S. Appa Rao
Millets Scientist
SADCC/ICRISAT
Sorghum-Millet Improvement Programme
P.O. Box 776, Bulawayo
Zimbabwe

Dr. K.V. Bondale
Joint Director (Millets)
Millets Development Directorate
19, Krishnama Road
Madras, India

Dr. L.B. Choudhary
Senior Scientist
Dept. of Plant Breeding & Genetics
Tirhut College of Agriculture
Dholi 830121, India

Dr. J.M.J. deWet
Director, Cereals Programme
ICRISAT
Patencheru P.O.
502 324, (AP) India

Dr. Hugh Doggett
38a Cottinham Road,
Histon, Cambridge,
CB 4, 4 ES, England.

Dr. John-Peter Esele
Plant Pathologist
Sorghum and Millet Unit
Uganda Agriculture and Forest Research Organisation
P.O. Soroti, Uganda

Dr. S.C. Gupta
Principal Millets Breeder
SADCC/ICRISAT
Sorghum-Millet Improvement Programme
P.O. Box 776, Bulawayo
Zimbabwe

Mr. B.T. Shankare Gowda
Geneticist (Millets)
Univ. of Agril. Sciences
Bangalore 560 065, India

Dr. M.A. Hamid
Chief Scientific Officer
Bangladesh Agricultural Research Institute
Joydebpur, Gazipur
Bangladesh

Dr. G. Harinarayana
Project Coordinator (Pearl Millet)
AICMIP, College of Agriculture
Pune 411 005, India

Dr. B.R. Hegde
Chief Scientist (Dry Farming)
Univ. of Agricultural Sciences
Bangalore 560 065, India

Dr. L.R. House
Leader
SADCC/ICRISAT
Sorghum-Millet Improvement Programme
P.O. Box 776, Bulawayo
Zimbabwe
Dr. V.A. Ilyin
Head, Seed Breeding Laboratory
South East Agricultural Res. Inst.
Saratov, USSR

Shri H.C. Joshi
Sr. Scientist (Millets)
Vivekananda Laboratory
Almora 263 601, India

Mr. Chen Jiaju
Professor and Head
Institute of Plant Germplasm
Resources
Laboratory of Sorghum & Millets
Chinese Academy of Agricultural Sciences
30 Bai Shi Quao Lu
West Suburbs, Beijing
The People's Republic of China

Dr. Yilma Kebede
Research Officer
Institute of Agricultural Research
Nazareth, Box 2003
Addis Ababa Ethiopia

Dr. Seyfu Ketema
Teff Breeder
Institute of Agricultural Research
Box 2003, Addis Ababa
Ethiopia

Mr. Bill Williams Khizzah
Principal Research Officer
C/o, Sorghum & Millet Unit
Uganda Agriculture & Forestry Research Organisation
P.O. Soroti, Uganda

Dr. K. Krishnamurthy
Director of Research
Univ. of Agril. Sciences
Bangalore 560 065, India

Shri B.K. Linge Gowda
Agronomist (Millets)
Univ. of Agril. Sciences
Bangalore 560 065, India

Mr. Mohamed Abdul Majid
Principal Scientific Officer (Cereals)
Bangladesh Agricultural Research Institute
Joydebpur, Gazipur
Bangladesh

Dr. N.G. Malleshi
Scientist, CFTRI
Mysore 570 013, India

Mrs. Mannujan
Sr. Scientific Officer (Cereals)
Bangladesh Agricultural Res. Inst.
Joydebpur, Gazipur
Bangladesh

Mr. Christopher Mburu
C/o. Dr. A.E.O. Chabeda
Chief Research Officer
Ministry of Agriculture & Livestock Department
Kilimo House, Cathedral Road
P.O. Box 30028
Nairobi, Kenya

Mr. Abebe Menkir
Research Officer
Institute of Agricultural Research
Nazareth, Box 2003
Addis Ababa, Ethiopia

Dr. B. Mishra
Sr. Millet Pathologist
Dept. of Plant Breeding & Genetics
Tirhut College of Agriculture
Dholi 834 121, India.

Shri T.K. Murthi
Entomologist (Millets)
AICMIP, College of Agriculture
Pune 411 005, India
Mr. Fighur Muza
Millet Breeder
Crop Breeding Institute
Dept. of Research & Specialist Services
Post Box No. 8100, Causeway
Harare, Zimbabwe

Mr. Reuben O.F. Mwambene
Principal Research Officer (Crops)
Uyole Agricultural Centre
P.O. Box 400
Mbeya, Tanzania

Dr. S. Palanisamy
Professor (Millet)
School of Genetics, TNAU,
Coimbatore 641 003, India.

Dr. S.V. Patil
Vice Chancellor
Univ. of Agril. Sciences
Bangalore 560 065, India

Dr. H.B. Patnaik
Breeder
Regional Research Station
P.B. No. 10, Semiliguda
Sunbeda 763 002, India

Mr. S. Ponnuthurai
Research Officer
Regional Research Centre
Department of Agriculture
Kilinochchi, Sri Lanka

Dr. T.G. Prasad
Department of Crop Physiology
University of Agricultural Sciences
Bangalore 560 065, India

Dr. P. Pushpamma
Plot No. 49, Aravindnagar
Domalguda,
Hyderabad 500 029, India

Shri V. Rama Rao
Asst. Millets Specialist
AICMIP, Millet Research Station
P.B. No. 6
Vizianagram 531 201, India

Dr. M.V. Rao
Special Director General, ICAR
New Delhi 110 001, India

Dr. S.M. Razvi
Ministry of Agriculture and Rural Development
Krishi Bhavan
New Delhi 110 001, India

Dr. A. Sambhashiva Reddy
Agronomist
Regional Agricultural Research Station
Nandyal 518 103, India

Dr. K.W. Riley
Hill Crops Advisor
Hill Crops Improvement Programme
Kavre Agricultural Centre
C/o ARPP, Box 1336
Kathmandu, Nepal

Mr. Deep Man Sakya
Assistant Agronomist
Dept. of Agriculture
G.P.O. Box 1135
Kathmandu, Nepal

Dr. S.R. Sampath
Head, Southern Regional Institute
National Dairy Research Institute
Audugodi,
Bangalore 560 030, India

Dr. T.V. Sampath
Agricultural Commissioner
Ministry of Agriculture and Rural Development
Krishi Bhavan
New Delhi 110 001, India
Dr. Kishor Sherchan
Asst. Agricultural Botanist
Hill Crops Improvement Program
Dept. of Agriculture
C/o ARPP, P.O. Box 1336
Kathmandu, Nepal

Dr. A. Seetharam
Project Coordinator (Small Millets)
Univ. of Agril. Sciences
Bangalore 560 065
India

Dr. S. Sashidhar
Jr. Physiologist (Millets)
Univ. of Agril. Sciences
Bangalore 560 065, India

Dr. R.A. Sheriff
Plant Scientist (Ragi)
Univ. of Agril. Sciences
Bangalore 560 065, India

Dr. D.N. Singh
Director (Millets)
Millets Development Directorate
19, Krishnama Road
Madras, India

Dr. D.P. Thakur
Professor & Head
Dept. of Plant Pathology
Haryana Agricultural University
Hissar 125 004, India

Dr. D.V.S. Tyagi
Millet Breeder
Dept. of Plant Breeding
G.B. Pant University of Agriculture and Technology
Pantnagar 263 145, India

Dr. M. Udaya Kumar
Department of Crop Physiology
University of Agricultural Sciences
GKVK
Bangalore 560 065, India

Dr. S.N.P. Verma
Senior Millet Breeder
College of Agriculture
Rewa 486 001, India

Mr. S. Viswanath
Virologist (Millets)
Univ. of Agril. Sciences
Bangalore 560 065, India

Mr. Vincent Makumbi Zake
C/o Sorghum & Millet Unit
Uganda Agriculture & Forestry Research Organisation
P.O. Soroti, Uganda

Dr. E.N. Zolutukhin
South East Agricultural Research Institute
Saratov, USSR
I

OVERVIEW AND TAXONOMY
Small millets may be defined as millets cultivated for their small grains which are borne on short, slender grassy plants. Pearl millets (*Pennisetum*) are excluded.

There are many small millets in the world. Some researchers consider that they were developed from the corresponding wild grasses as the result of continued harvesting for food. Others believe that the prior spread of the idea of agriculture was needed in most cases before domestication could begin. Certainly the Alyawara people of central Australia failed to develop domesticated crops, even though some of the wild grasses (*Panicum* spp.) were morphologically and taxonomically similar to those domesticated elsewhere, and seeds were important in their traditional diet (O'Connell et al., 1983).

The millets considered here are those being cultivated in the subtropical and tropical areas of the Old World. The list contains Finger millet (*Eleusine coracana*), Proso millet (*Panicum miliaceum*), Foxtail millet (*Setaria italica*), Little millet (*Panicum sumatrense*), (formerly *P. miliare*), Barnyard (Sawa) millet (*Echinochloa colona*) (formerly *E. frumentacea*), Kodo millet (*Paspalum scrobiculatum*), Teff (*Eragrostis teff*), Fonio millet (*Digitaria exilis* and *D. iburua*).

Small millets may also be called minor millets, but they are not unimportant. Japanese barnyard millet, proso and foxtail millets have all been important in the past, and are still important today, especially in Asia. Finger millet is an old tropical cereal still widely grown in eastern Africa and south Asia. Kodo and little millets continue to be important in Asia in times of famine or difficulty.

The small millets are often grown in difficult conditions, and it is scarcely surprising that they involve high production risks (Joshi and Agnihotri, 1984).
Small Millets

They have always been crops for situations where there is a risk of famine, as well as offering a low but more reliable harvest—relative to other crops—in low rainfall areas. Kodo millet was traditionally stored in the temples, so that seed would be available in times of crisis. The potential of these millets deserves more study. Food and seed reserves in the village are important, and should not be overlooked. They have good potential for livestock feed in the dry zones. The small millets should be developed both for their potential as good grain producers with modest water needs, and also as producers of forage. They can make good use of any irrigation water available after the main crops have been harvested, and so may be fitted in to more productive cropping patterns.

Finger millet

Finger millet was developed in Africa from *E. coracana* subsp. *africana*, probably in the Ethiopian region. It was introduced to India perhaps more than 3,000 years ago. It is a tropical crop, grown from sea-level to 3,000 m asl. This is the most widely grown small millet in India and Africa, and can be very productive. de Wet *et al.* (1984) recognized five races.

Proso millet

Proso millet is also an ancient crop. It was probably domesticated in central and eastern Asia, and was cultivated in Europe in Neolithic times (Purseglove, 1985). It was well known to the Romans, and became the 'common millet'. This is essentially a crop of the temperate regions, but is also grown in the sub-tropics, and on high ground in tropical winters.

Foxtail millet

Foxtail millet is yet another ancient crop, probably domesticated in eastern Asia, and known to the Chinese as early as 2,700 BC (Purseglove, 1985). It is essentially a crop of the sub-tropical and temperate zones. The main production areas are in Japan, China, India and eastern Europe. Cobley (1976) noted that more than 12 rather variable groups of cultivars have been recognized.

Little millet

Little millet is grown to a limited extent in India, up to altitudes of 2,100 m. It occurs wild in northern India and southeastern Asia. It will yield some grain and useful fodder under very poor conditions. Some forms mature in as little as two-and-a-half months (Purseglove, 1985).

Barnyard millet

Japanese barnyard millet *Echinochloa crusgalli* was domesticated in Japan some 4,000 years ago. It belongs essentially to the temperate zone. Barnyard (Sawa) millet, *E. colona*, was domesticated in India, where it remains an important cereal in some areas. It has also been recorded from the Central African
Republic, Tanzania, and Malawi. The two species have different chromosome numbers ($2n = 54$ and $2n = 36$ respectively), and hybrids between them are sterile. The wild form is widespread as a tropical weed. de Wet et al. (1983a) distinguished four races.

Kodo millet

Kodo millet is grown as a cereal in India only, although the wild grass is a widespread tropical weed. The crop has been grown for at least 3,000 years, yet de Wet et al. could not find any clear racial differentiation. Wild, weed, and cultivated types merged in all the characters studied. Kodo millet is said to be poisonous after rain. This could be due to a fungal infection. Winnowed, clean healthy grain seems to pose no health problem (de Wet et al., 1983b).

Teff

Teff is the most important cereal crop in Ethiopia, particularly in the poorly drained, heavy soils that predominate in the Central Plateau. Nevertheless, the crop has not become important outside Ethiopia.

Fonio

Fonio, also known as hungry rice, is grown as a cereal crop throughout the savanna zone of West Africa. In parts of Guinea and Nigeria it is the staple crop. *Digitaria exilis* is considered to be the oldest West African cereal and its cultivation is thought to date back to 5000 B.C. The crop can grow on poor, shallow and rocky soils, but is not grown outside Africa. *D. iburua* is a white seeded form (Purseglove, 1985).

Observations from Africa

In Africa south of the Sahara, finger millet occupies the largest area under small millets in the eastern part of the continent, but there is a substantial area of teff in Ethiopia. In West Africa, fonio millet occupies a similar ecological niche to finger millet. There is also a small area of *Brachiaria deflexa* millet there.

Area and production figures for these millets separately are not readily available. Data collected on the small millets are often combined with pearl millet and even with sorghum figures. Finger millet is grown abundantly in the Lake Victoria region—Uganda, Kenya, Tanzania, Zaire, Rwanda and Burundi. The crop is also important in northeast Zambia and the southern highlands of Tanzania. Significant amounts are also grown in Zimbabwe, Malawi, and Mozambique. It is possible to get an approximate picture for the situation of finger millet in Uganda, because very little of any other millet is grown, so the FAO figures for millets refer pretty closely to finger millet. Table 1 shows the millet areas in Uganda from 1961-1984 (as reported by FAO in 1985).
6 Small Millets

TABLE 1
Area of millet in Uganda (000 hectares)

<table>
<thead>
<tr>
<th>Year</th>
<th>Area</th>
<th>Year</th>
<th>Area</th>
<th>Year</th>
<th>Area</th>
<th>Year</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>530</td>
<td>1968</td>
<td>558</td>
<td>1974</td>
<td>510</td>
<td>1980</td>
<td>279</td>
</tr>
<tr>
<td>1963</td>
<td>528</td>
<td>1969</td>
<td>528</td>
<td>1975</td>
<td>567</td>
<td>1981</td>
<td>300</td>
</tr>
</tbody>
</table>

It will be seen that the millet area was steady from 1961-64, but increased to a higher level between 1965 and 1973, with the exception of 1969. During the period 1979-84, the area was relatively steady, but much reduced relative to 1961-64. Uganda has been through some hard times since 1970. There is good reason to believe that maize has invaded some of the finger-millet areas, so that there may have been a decline in millet area per capita which will persist. African finger-millet growers tend to be conservative, a lot of finger millet is fermented, and for such foods other cereals are seldom as suitable. Maize has other advantages, green cobs are popular and profitable to grow, and the ripe grain is easier to gather and handle.

Little serious research has been done in Africa on finger millet improvement and agronomy, with the exception of the work at Serere in Uganda. There, a small improvement programme has been operating at a low level for more than thirty years. Some good lines have been identified, and a male-sterile which was induced some 15 years ago has permitted more intercrossing. The scientists have been working under very difficult conditions for the past 14 years.

Teff is the most important cereal crop in Ethiopia, with the area planted fluctuating between 1.1 million and 0.87 million hectares. Some improved lines of teff have been isolated. Teff has never been adopted as a grain crop outside Ethiopia, and although it will certainly maintain an important place in the Ethiopian highlands between, 1,700 and 2,300 m, the crop is unlikely to spread into other countries. Since 1976, the area of finger millet in Ethiopia has fluctuated between 200,000 and 250,000 ha, falling to 180,000 in 1984. Studies in Ethiopia are now underway to identify finger millet lines with potential in the erratic rainfall areas.

OBSERVATIONS FROM INDIA

Figures are available from India for finger millet area and production by State (Joshi and Agnihotri, 1984). Table 2 shows the percentage of area and production of finger millet for each of the seven major millet producing States.
for the 1980-81 period. The last three columns of the table show the annual compound growth rates for production, area, and yield between 1970-71 and 1981-82, given as per cent change per year.

TABLE 2
Area and production of finger millet in India, and growth rates for the period 1970-71 to 1980-81

<table>
<thead>
<tr>
<th>State</th>
<th>Area</th>
<th>Prodn.</th>
<th>Prodn. Rate</th>
<th>Area Rate</th>
<th>Yield Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>9.86</td>
<td>9.85</td>
<td>+1.36</td>
<td>-0.13</td>
<td>+1.49</td>
</tr>
<tr>
<td>Bihar</td>
<td>6.87</td>
<td>3.73</td>
<td>+4.33</td>
<td>+1.30</td>
<td>+3.03</td>
</tr>
<tr>
<td>Karnataka</td>
<td>42.2</td>
<td>50.53</td>
<td>+5.82</td>
<td>+0.75</td>
<td>+5.07</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>8.91</td>
<td>7.98</td>
<td>+3.38</td>
<td>+0.67</td>
<td>+2.71</td>
</tr>
<tr>
<td>Orissa</td>
<td>10.99</td>
<td>6.24</td>
<td>+2.46</td>
<td>+6.77</td>
<td>-4.31</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>9.93</td>
<td>20.33</td>
<td>+3.22</td>
<td>-0.79</td>
<td>+4.01</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>6.82</td>
<td>5.33</td>
<td>-5.10</td>
<td>-4.32</td>
<td>-0.78</td>
</tr>
<tr>
<td>All-India</td>
<td>100</td>
<td>100</td>
<td>+3.37</td>
<td>+0.64</td>
<td>+2.73</td>
</tr>
</tbody>
</table>

Finger millet production increased at a rate of 3.37 per cent per year during the period covered by the table, which exceeded the rate of population growth. The annual rate of yield increase at 2.73 per cent is gratifying. The breakdown by States shows that Karnataka and Tamil Nadu achieved yield increases at rates of 5.07 and 4.01 per cent per annum respectively, which represents excellent progress. Production increase rates were maintained well, in spite of the fall in area in Tamil Nadu. Orissa stands out as showing a substantial rate of area increase accompanied by a marked decline in yield, although production increased at a reasonable rate. Presumably the demand for finger millet was well maintained, so Orissa stands out as one needing inputs, including cultivars, that are better adapted. Uttar Pradesh showed negative area, production, and yield trends. One may guess that finger millet was being replaced by more valuable crops, possibly in the wake of increased areas under irrigation. Grain price is clearly important, but a crop such as finger millet is probably most influenced by very local demand. Other statistics presented by Joshi and Agnihotri (1984) showed that finger millet had a higher probability of crop failure than pearl millet, rice, or sorghum, but the difference between bajra and ragi was small (0.50 to 0.56).

Table 3 shows the ratio of gross returns of finger millet relative to those of rice (Joshi and Agnihotri, 1984) for the years 1970-71 and 1980-81.

Bihar, Karnataka, Maharashtra and Tamil Nadu showed an encouraging increase in the ratio, while Uttar Pradesh had the highest ratio for both years. However, the ratio was clearly in favour of rice apart from Uttar Pradesh, and
TABLE 3
Ratio of gross returns of finger millet to gross returns of rice

<table>
<thead>
<tr>
<th>State</th>
<th>1970-71</th>
<th>1980-81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>0.72</td>
<td>0.55</td>
</tr>
<tr>
<td>Bihar</td>
<td>0.61</td>
<td>0.66</td>
</tr>
<tr>
<td>Karnataka</td>
<td>0.61</td>
<td>0.62</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>0.87</td>
<td>0.95</td>
</tr>
<tr>
<td>Orissa</td>
<td>1.25</td>
<td>0.68</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>0.64</td>
<td>0.74</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>1.35</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Orissa in 1970-71. The procurement price for millets and unhusked rice was the same, so yield differences between the millets and rice must have been important, as well as unit production costs.

Figures for the five south Asian small millets being considered, were only available combined together (Joshi and Agnihotri, 1984). They are shown in Table 4.

Again, there was a good increase in yield in Karnataka, together with an increase in production, though there was some reduction in the crop area. This suggests that these small millets are being grown more efficiently in that State. In Maharashtra, there was little change in area, and a modest increase in production accounted for very largely by the increase in yield. Orissa lost yield, but did achieve increased production. The remaining four States in the table all lost production, and they accounted for 62.8 per cent of the whole country’s production. The area under small millets decreased, while yields were

TABLE 4
Area and production of 5 small millets in India (excluding finger millet) and growth rates for the period 1970-71 to 1980-81

<table>
<thead>
<tr>
<th>State</th>
<th>Percentage share of Indian total 1980-81</th>
<th>Annual compound growth rates, % per annum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>area</td>
<td>prodn.</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>14.17</td>
<td>16.14</td>
</tr>
<tr>
<td>Karnataka</td>
<td>10.23</td>
<td>12.74</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>5.15</td>
<td>5.73</td>
</tr>
<tr>
<td>Orissa</td>
<td>5.16</td>
<td>5.00</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>8.99</td>
<td>17.76</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>9.17</td>
<td>12.90</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>36.70</td>
<td>16.04</td>
</tr>
<tr>
<td>All India</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
down in both Andhra Pradesh and Madhya Pradesh. Even Tamil Nadu, which produced quite good figures for finger millet showed no signs of improvement as far as the small millets were concerned.

Potential for small millet improvement in India

In the past, the data needed to assess the comparative merits of the small millets have not been available. Comparisons have been essentially qualitative. In 1978, ICAR expanded the research on small millets, and invited IDRC to contribute towards this. Five small millets were chosen, namely foxtail, barnyard, proso, kodo, and little millets. Work was strengthened at appropriate sites, and multilocational testing was available at these sites, as well as at other locations where AICMIP conducted its trials. Direct comparisons between the different millets were not made, but it is of interest to look at the data now available, from this project and to make tentative assessments.

Foxtail millet

This millet is said to be widely grown in India (Anon 1984), but the figures suggest that it is only important in a few areas. In 1977-78, there were 479,000 ha in Andhra Pradesh, 232,000 in Karnataka, and 20,000 ha in Tamil Nadu, and together these three States grew 95 per cent of the total recorded Indian acreage. Within Andhra Pradesh, three of the 13 districts grew 79 per cent of the State total (Anon 1984). It is evidently useful in Andhra Pradesh, and can grow quite well in other areas also, as will be seen from Table 5.

The All-India figures in Table 5 are averages of a series of multilocational trials, and do suggest an upward yield trend for the breeders' materials going in to these trials. The Nandyal data suggest good stability of yield levels over years, with a bad season in 1980, but there is little sign of an upward trend. The figures from elsewhere may indicate very variable yields, though one needs to have the planting dates relative to the onset of the rains. On an experiment station, other activities may have priority, and a small millet variety trial may be sown late. The data at least suggest that yields in Nandyal are more stable.

<table>
<thead>
<tr>
<th>Year</th>
<th>All-India</th>
<th>Nandyal</th>
<th>Dholi</th>
<th>Semiliguda</th>
<th>Almora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>13.5</td>
<td>18.3</td>
<td>21.4</td>
<td>4.9</td>
<td>7.4</td>
</tr>
<tr>
<td>1980</td>
<td>10.5</td>
<td>4.7</td>
<td>2.7</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>12.8</td>
<td>14.9</td>
<td>3.7</td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>1982</td>
<td>16.0</td>
<td>16.0, 14.8</td>
<td>9.7</td>
<td>2.7, 2.0</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>14.5</td>
<td>16.1</td>
<td>14.5</td>
<td>11.0</td>
<td>5.1</td>
</tr>
<tr>
<td>1984</td>
<td>17.8</td>
<td>16.8</td>
<td>5.9</td>
<td>8.1</td>
<td></td>
</tr>
</tbody>
</table>
than those at Dholi, and may point to the reason why so much foxtail millet is grown in one part of Andhra Pradesh. Conditions there are evidently right for this crop. The maturity lengths of lines at Nandyal lie roughly in the range 75-95 days, mostly in the mid-eighties Nandyal has a strong research team, which is making good progress.

Barnyard millet

Work on this crop in India is based at Almora in the hills of Uttar Pradesh. Barnyard millet is quite important in Uttar Pradesh, where it occupies some 230,000 ha, almost equally divided between hills and plains. Within India, it is also cultivated in Madhya Pradesh, Maharashtra, and Tamil Nadu. Table 6 gives coordinated trial results (Anon, 1979-84).

The yield figures shown in Table 6 are reasonably stable for three of the sites, and the combined All-India figure does not fall below 11 q/ha. The length of maturity at Almora in 1984 was around 100 days, some 55-70 in Coimbatore, and 65-85 in Pune. This millet appears to deserve more attention.

Proso millet

Proso millet is grown in Andhra Pradesh, Maharashtra, Tamil Nadu, Uttar Pradesh, and Bihar. In Bihar, it is cultivated throughout the year, as a catch crop before the main kharif, or after the rabi crop harvest. Two quick crops may be taken during the summer in March-June. There are some 75,000 ha grown in Bihar. Proso-millet is said to have a very low water requirement, and also a wide range of adaptation to climates, soils, and altitudes. The research on proso in India is centered at Dholi. Lengths of maturity are recorded as 55-85 days for germplasm at Dholi, but lines in trials averaged 65-75 days according to season and location. Some figures from the AICMIP trials during the period 1979-84 are shown in Table 7 (Anon, 1979-1984).

TABLE 6

<table>
<thead>
<tr>
<th>Year</th>
<th>All-India</th>
<th>Almora</th>
<th>Dholi</th>
<th>Nandyal</th>
<th>Rewa</th>
<th>Pune</th>
<th>Semiliguda</th>
<th>Coimbatore</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>20.6</td>
<td>23.2</td>
<td>19.4</td>
<td>20.6</td>
<td></td>
<td></td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>15.2</td>
<td>18.0</td>
<td>19.0</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>11.3</td>
<td>20.8</td>
<td>7.7</td>
<td>14.4</td>
<td>5.4</td>
<td>16.2</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>11.7</td>
<td>19.3</td>
<td>12.0</td>
<td>11.0</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>15.1</td>
<td>16.2</td>
<td>14.9</td>
<td>10.6</td>
<td>10.9</td>
<td>23.3</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>17.1</td>
<td>14.0</td>
<td>17.0</td>
<td>13.1</td>
<td>7.8</td>
<td>18.1</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>15.6</td>
<td>21.7</td>
<td>10.4</td>
<td>25.9</td>
<td>9.1</td>
<td>17.7</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>12.5</td>
<td>18.3</td>
<td>8.3</td>
<td>8.6</td>
<td>15.5</td>
<td>15.5</td>
<td>16.9</td>
<td>5.8</td>
</tr>
</tbody>
</table>
TABLE 7

<table>
<thead>
<tr>
<th>Year</th>
<th>All-India</th>
<th>Nandyal</th>
<th>Semiliguda</th>
<th>Dindori</th>
<th>Dholi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>1.8</td>
<td>5.5</td>
<td>0.6</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>12.4</td>
<td>6.0</td>
<td>2.1</td>
<td></td>
<td>11.1</td>
</tr>
<tr>
<td>1980</td>
<td>10.4</td>
<td>16.5</td>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>1981</td>
<td>8.6</td>
<td>2.9</td>
<td></td>
<td></td>
<td>22.8</td>
</tr>
<tr>
<td>1982</td>
<td>12.5</td>
<td>13.5</td>
<td>13.8</td>
<td></td>
<td>17.9</td>
</tr>
<tr>
<td>1983</td>
<td>7.5</td>
<td>11.9</td>
<td></td>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td>1984</td>
<td>11.5 (rabi)</td>
<td>18.6 (kharif)</td>
<td></td>
<td></td>
<td>14.9 (summer)</td>
</tr>
<tr>
<td>1984</td>
<td>12.9 (rabi)</td>
<td></td>
<td></td>
<td></td>
<td>10.3 (kharif)</td>
</tr>
<tr>
<td>1984</td>
<td>10.3 (rabi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fewer figures are available for this millet, but only Dholi has a consistently steady level of yield. Some years show very low figures at Nandyal, Semiliguda, as well as in the All-India trials average itself. This millet may have problems in certain locations or seasons. Proso millet can be damaged severely by shootfly, and birds can be locally troublesome.

Little millet

Separate data for areas under little millet were not available, figures were either combined with those for kodo, or with other small millets. Yields from the trials (Venkateswarlu et al., 1984) are shown in Table 8.

In the AICMIP trials, duration varied from 70 to 118 days, and yields were unexciting. The rather few figures available suggest neither reliable yields, nor good production per growing day. Little millet is grown in Tamil Nadu, Karnataka, Andhra Pradesh, Maharashtra, Orissa, Bihar, Madhya Pradesh and Uttar Pradesh. It is described as a “quick growing, short duration cereal which withstands both drought and waterlogging” (Anon, 1979-1984). Doubtless this is a valuable crop in difficult situations, but other millets seem to have a greater development potential.

TABLE 8

<table>
<thead>
<tr>
<th>Year</th>
<th>All-India</th>
<th>Semiliguda</th>
<th>Dindori</th>
<th>Nandyal</th>
<th>Rewa</th>
<th>Pune</th>
<th>Ranchi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>9.5</td>
<td>2.2</td>
<td>2.0</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>9.1</td>
<td>3.7</td>
<td>8.3</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>2.7</td>
<td>7.0</td>
<td></td>
<td></td>
<td>8.6</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>7.4</td>
<td>4.1</td>
<td>1.8</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>7.5</td>
<td></td>
</tr>
</tbody>
</table>
12 Small Millets

Kodo millet

The last millet included in the AICMIP programme is kodo millet, and mean trial yields from the All-India programme are shown in Table 9.

<table>
<thead>
<tr>
<th>Year</th>
<th>All-India</th>
<th>Dindori</th>
<th>Nandyal</th>
<th>Dholi</th>
<th>Rewa</th>
<th>Pune</th>
<th>Coimbatore</th>
<th>Semiliguda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>16.1</td>
<td>2.2</td>
<td>15.0</td>
<td>27.1</td>
<td>9.3</td>
<td>44.0</td>
<td></td>
<td>12.8</td>
</tr>
<tr>
<td>1980</td>
<td>16.5</td>
<td>6.5</td>
<td>15.7</td>
<td>13.8</td>
<td>9.3</td>
<td>44.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>14.7</td>
<td>3.1</td>
<td>6.3</td>
<td>15.3</td>
<td>12.8</td>
<td>43.1</td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>25.8</td>
<td>8.9</td>
<td>15.0</td>
<td>22.0</td>
<td>16.4</td>
<td>15.4</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>19.4</td>
<td>7.2</td>
<td>19.0</td>
<td></td>
<td>9.1</td>
<td>20.2</td>
<td>10.6</td>
<td>22.9</td>
</tr>
<tr>
<td>1983</td>
<td>18.4</td>
<td>13.4</td>
<td></td>
<td>17.2</td>
<td>30.5</td>
<td>25.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>18.4</td>
<td>10.0</td>
<td>18.3</td>
<td>30.2</td>
<td>25.7</td>
<td>34.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kodo millet is said to occupy the largest area of any small millet in India. It is grown for grain in Madhya Pradesh, Uttar Pradesh, Tamil Nadu, Karnataka, Gujarat and Maharashtra. It is referred to as a long-duration crop, hardy and drought resistant. The trial data show maturity periods of 81-135 days, suggesting an unusual flexibility.

COMPARISON OF THE SMALL MILLETS

The Small Millets Project under the All-India Co-ordinated Millet Improvement Project (AICMIP) has done a great service in getting together some data on the performance of this neglected group of cereals from a good series of multi-locational trials across the Indian millet areas. In addition, good progress has been made in varietal improvement, agronomy, and in assessing pest and disease susceptibilities and control. We now have some information upon which a policy for these crops can be based.

These observations are based upon variety trials, not upon farmers’ trials. The trials have had different treatments from that which a farmer would have given. The level of research staffing has varied from centre to centre. My presentation of the data is open to criticism, the averages of trial yields presented may have come from various trials, though always done in the same year and site as that stated. Nevertheless, helpful tentative conclusions may still be drawn. Proso millet and little millet have been generally poorer than the other three small millets. Foxtail, barnyard, and kodo millets show promise. Table 10 gives the mean yields of trials at locations where there are three or more years of data. The number of years, and locations contributing to each mean are shown in brackets.
TABLE 10
Experimental mean yields over years of the three highest yielding small millets

<table>
<thead>
<tr>
<th></th>
<th>Foxtail</th>
<th>Barnyard</th>
<th>Kodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-India</td>
<td>14.2 (6)</td>
<td>14.9 (8)</td>
<td>18.5 (7)</td>
</tr>
<tr>
<td>Nandyal</td>
<td>14.5 (6)</td>
<td>15.7 (8)</td>
<td>14.7 (7)</td>
</tr>
<tr>
<td>Dholi</td>
<td>11.0 (5)</td>
<td>13.6 (8)</td>
<td>19.5 (4)</td>
</tr>
<tr>
<td>Semiliguda</td>
<td>6.7 (4)</td>
<td>10.8 (4)</td>
<td>24.9 (4)</td>
</tr>
<tr>
<td>Mean of first 4</td>
<td>11.6 (21)</td>
<td>13.8 (28)</td>
<td>19.4 (22)</td>
</tr>
<tr>
<td>Almora</td>
<td>6.1 (3)</td>
<td>18.9 (8)</td>
<td></td>
</tr>
<tr>
<td>Dindori</td>
<td></td>
<td>5.4 (3)</td>
<td>25.5 (3)</td>
</tr>
<tr>
<td>Coimbatore</td>
<td>9.7 (6)</td>
<td></td>
<td>15.8 (4)</td>
</tr>
<tr>
<td>Pune</td>
<td>18.1 (8)</td>
<td></td>
<td>32.7 (6)</td>
</tr>
<tr>
<td>Mean, all trials</td>
<td>11.3 (24)</td>
<td>16.3 (50)</td>
<td>18.6 (42)</td>
</tr>
</tbody>
</table>

Kodo and barnyard millets show up well in Table 10. Foxtail may be more limited in its ecological range, and also in the yield level it can achieve. This may be an unfair conclusion, as it was only tried at five sites. It may not have had an opportunity to give of its best, but there is good evidence on which to support kodo and barnyard millets. Foxtail millet may be left as locally important and deserving of continued improvement work. From Table 6, we see that barnyard millet chalked up 25.9 q/ha at one site, 23.3 at another, and recorded eight trial mean yields of 20 q/ha or better. Kodo millet in Table 9 recorded one yield of 50.6, two over 40, three over 30, and seven of 20 or better in q/ha. These are good values for trial mean yields. Kodo millet thus shows a good yield potential, while barnyard millet may deserve better marks for stability. The lowest barnyard millet yield was 5.5 q/ha. Kodo recorded one of 2.2, and another of 3.1 q/ha. It would be best to back both, but I would choose kodo millet if a choice had to be made.

POSSIBILITIES FOR FURTHER IMPROVEMENT OF SMALL MILLETS

Finger millet

The figures quoted above show clearly that finger millet is an important cereal both in India and in Africa.

Steady progress in finger millet improvement is being made in India. A recent paper by de Wet et al. (1984) has set out the germplasm situation very clearly. As with some other African crops that were moved to India—such as niger and sorghum—the wild progenitor was left behind in Africa. This gave rise to two separated populations, one of which continued to develop alongside the wild type, with some introgression between them. The other population continued to develop in India without any such interaction. The two populations have been separated for at least 3,000 years. There must be a great poten-
In this situation for the improvement of finger millet. A little of it has already been utilized in the development of the 'Indaf' finger millets, but much more remains to be done.

The finger millet crop contains a wide range of variability. There are types selected at Almora which will yield a crop under very low moisture conditions. In southern India, irrigated finger millet can give 40 q/ha on very little irrigation water. Venkateswarlu et al. (1984) reported yields of over 40 q/ha on 365 mm of water. Yields in rainfed trials in Uganda may lie between 30 and 55 q/ha (Anon, 1966-69), while entries in the coordinated trials in India may reach 50 q/ha (Anon, 1982-83). This crop has a big unrealized potential in Africa, where irrigated finger millet is scarcely known. Irrigation with transplanting permits better weed control in the early stages of crop growth, most of the land can be cleaned while the nursery is being raised on only one-sixth of the final area. Evidence from India shows that transplanting usually leads to better yields (Rachie and Peters, 1977).

More interaction and cooperation between the research in Africa and in India is needed. More scientists, more research locations, and more support for finger millet research are required in Africa. Serere in Uganda is still doing finger millet research (Makumbi Zake and Esele, 1984); there is increasing interest in Kenya and trials are being done from time to time elsewhere in Africa. It should not be difficult to strengthen work on finger millet in southern Tanzania, and in Zambia or Zimbabwe. Such cooperation will require rather free interchange of germplasm and early generation material. An oilseeds network has been established for identical reasons. There are oilseed projects in both India and eastern Africa, and a network advisor is based in Ethiopia. He keeps the researchers in good touch with each other, and also with programmes and research scientists elsewhere. Something similar would be very useful for the small millets.

The next requirement is for many crosses to be made between African and Indian material so that its potential may be fully exploited. Those two populations separated for such a long period, but under selection as a cultivated crop will have accumulated gene differences that could give very productive combinations when brought together. Hybridizing finger millets is difficult and fiddling. There is a need for male-steriles. I do not know the situation in India, but there is a good male-sterile at Serere. Four populations have been established, and recurrent selection is in progress there. More male-steriles and more population improvement programmes of this kind are needed. A determined effort to obtain male-steriles should be made. Postgraduate students with access to a radiation source and a supply of chemical mutagens should be able to produce useful steriles.
Other small millets

Work on the best of these should be continued in India. Additional effort into proso or little millets could be questioned. Foxtail millet clearly has a place in the agriculture of certain areas where it flourishes, and work on it should certainly be continued, perhaps strengthened. The analysis of the AICMIP results, offered tentatively above, tends to support what botanists might have suspected: that tropical plants perform better overall in the tropics than do temperate or subtropical plants, although there are niches, especially on raised plateaux and in the hills, where the latter do perform well. The two millets deserving serious attention, additional to finger millet, are barnyard (sawa) and kodo millets.

Both millets are likely to have a good potential in Africa, where there is certainly a lot of wild germplasm available. There could be some cultivated barnyard millet there, it was once grown in Egypt. They offer an exciting challenge. Both millets were domesticated in India, and the introduction of exotic germplasm, even of the wild type, followed by hybridization and introgression, could be useful. It would be really good to see a small millets network set up linking the two continents, as mentioned above, with finger millet, kodo millet, and barnyard millet as the crops of the network.

Kodo millet is cleistogamous, but protogynous types have been selected, and crosses made. In the Indian wild types the stigmas protrude from the spikelets. The observation by de Wet et al. (1983b), on the lack of racial differentiation after 3,000 years, suggests that it could be a very interesting crop with which to work. Maize, sorghum, finger millet, barnyard (sawa) millet among many other crops have developed racial differentiation.

Barnyard millet is largely self-pollinated, and as with kodo, the wild germplasm is very widespread in the tropics of the Old World. If both millets can perform as they have done in these trials without much improvement from plant breeders as yet, their potential could be great.

Clearly, these two small millets will not be of much interest to Africa initially. If a network can be established for finger millet, then wild African germplasm of all three small millets could be fed back to India, where it would be of value to the breeding programmes. Promising cultivars of kodo and sawa millet could be sent to Africa for observation and trial. Every effort should be made to develop male-steriles of kodo and barnyard millets, as suggested above for finger millet.

Lastly, I cite to two works which give excellent guidelines to those designing improvement programmes. The first is Eberhart et al. (1967), which proved very useful to plant breeders in eastern Africa. The second is Jensen (1978), and has influenced breeding approaches in the USA. Jensen's approach could be really useful in breeding small millets, once the male-sterile problem has been solved. A lot can be done using bulk populations, especially where plenty of semi-skilled help is available.
FINAL REMARKS

The point has been made to me that novel crop improvement techniques may not always be appropriate in the developing world. Let me not attempt to discuss what could be a contentious issue, but rather set out a few principles.

The plant breeder is above everything a manager. He must have defined his objectives clearly, he then needs to review his resources. Two of the important ones are his own working time, and the trained capability of his assistants. Do we all make the maximum use of the labour available to us in the developing world? Three instances occur to me: (1) The production of hybrid seed of cotton in India. It is possible to train ladies from the villages to do this reliably and well, they have no background of scientific or experimental work. (2) The use of school girls during the vacation by the Sorghum programme in Ethiopia to make the crosses. (3) The use of six girls from the local village by Dr. Henry Fernando in Kandy, Sri Lanka to do all his tissue culture work in a large and successful hybridization programme.

Let me add my own tribute: I have always received the most careful, accurate, and diligent help from ordinary village people. There is a wealth of talent on which to draw. A lot of people have the capability to be educated far beyond any level they may have achieved, that may be no level at all. They simply have not had the same chance that we had. This training takes some of the breeder’s time initially, but it is time well spent. If the breeder starts with one of his permanent assistants to help him, he can very soon hand over that particular aspect of the training. It is obviously important that he be in at the beginning of training in any new area. He has to learn himself how best to do it, and how much to do, relative to the capabilities of his trainees.

The philosophy of the breeding approach should always be clear, and should take into account the most recent knowledge. The implementation of that knowledge must depend on what the plant breeder feels his team is capable of doing in the light of the overwhelming priority to get better material out to the farmer as soon as possible. Thus, Eberhart et al. are not recommended so that everybody can start up programmes of reciprocal recurrent selection. They are recommended to emphasize the value of thinking in terms of exploiting heterosis—and of splitting the material into two basic groups, so that one is working towards the efficient use of heterosis one day. Similarly, Jensen’s approach is so time-saving, running crosses in mass-selected bulks until the \(F_2 \) before exploding into progeny rows. The use of male-steriles to minimize making deliberate crosses. One of the purposes of workshops is to kick ideas around: there may be opportunities to modify one’s programme a little as a result.
LITERATURE CITED

ORIGIN, EVOLUTION AND SYSTEMATICS OF MINOR CEREALS

J.M.J. de Wet

The Poaceae includes an estimated 8,000 species belonging to some 600 genera. Grasses occur on all continents, and in all habitats that support growth of flowering plants. They serve man in many ways, but it is their use as cereals and feed for livestock that make them essential for human survival. The caryopses of most grasses are edible, and at least 300 species were harvested during historical times as wild cereals by nomadic hunters and herders, and by farmers during times of scarcity. Thirty-five species belonging to 20 genera are known to have been domesticated. Their cultivated races rely on man for seed dispersal (sowing), and for a suitable habitat to reproduce successfully (cultivated field).

Cereals are globally planted on an estimated 730 million hectares, and yield an estimated 1,800 million metric tons of grain annually. Wheat, maize and rice account for approximately 80 per cent of grain produced in the world. These cereals are followed in importance by barley, sorghum, oats, rye and pearl millet which together represent another 19 per cent of the world’s cereal production. The remaining cereals account for about 1 per cent of the foodgrain produced in the world today. These minor cereals are not important in terms of world food production, but essential as food crops in their respective agro-ecosystems. They are mostly grown in marginal areas, or under agricultural conditions where major cereals fail to consistently produce an acceptable harvest.

MINOR CEREALS OF THE AMERICAS

Wild cereals played an important role in the diets of native Americans until recent historical times (Palmer, 1871; Ball, 1884). Fifty species were extensively
harvested, but only six species were domesticated as cereals. Maize (Zea mays L.) is the only New World cereal of commercial significance. Setaria geniculata (Lam.) P. Beauv. (brittle grass) from arid Mexico (Callen, 1965), and Phalaris caroliniana Walt. (may grass) of the southeastern United States (Chomko and Crawford, 1978) are known as cultivated cereals only in an archaeological context. Brittle grass was grown for at least a millennium (Callen, 1967), but was replaced by maize as a cereal some 4000 years ago (Mangelsdorph, MacNeish and Gallinat, 1967). Two minor cereals, mango (Bromus mango Desv.) in Chile and sauwi (Panicum sonorum Beal) in Mexico were important crops until recent historical times. American wild rice (Zizania aquatica L.) is a recent domesticate in north central Canada and adjacent regions of the USA (de Wet and Oelke, 1979).

Molina (1782) recorded that the Araucano Indians in Central Chile grew a kind of rye that was called el Mango, and a kind of barley that was called la Tuca. Tuca probably refers to Bromus unioloides HBK., a wild grass that was extensively harvested as a cereal on the highlands of South America (Ball, 1884). El Mango (Bromus mango) was cultivated. Gay (1865) recorded that it was a biennial crop, grown with peppers and beans. Florets were roasted to facilitate removal of the lemma and palea, and the grains were ground into flour to make bread or a fermented drink called chicha. Cruz (1972) cited an unpublished manuscript by Arturo Fontecilla Larrain, a professor of agronomy at the Catholic University of Santiago in Chile during the early twentieth century, who recorded that plants of el Mango produced 40-50 culms, each bearing an inflorescence with 70-100 grains. It required eighteen months to mature, however, and el Mango was replaced during the last half of the twentieth century by wheat for making flour and by apples to make cider (Brucher, 1979).

Sauwi (Panicum sonorum) is native to arid western North America. It formed an important part of the Sonoran desert agriculture of northwestern Mexico (Nabhan and de Wet, 1984). It was widely grown well into the twentieth century by Indian tribes who lived along the Colorado river delta (Gifford, 1931). Today it is grown only in southeastern Sonora and adjacent Chihuahua. Although little known outside this area, sauwi is a promising cereal for the semi-arid tropics of Africa and Asia. It is drought tolerant, and has acceptable yield potential under adverse conditions. Plants produce several tillers, each of which produce an inflorescence with as many as 2,500 fertile florets.

The only New World minor cereal of present-day economic importance is American wild rice. This is not a true rice. It belongs to the genus Zizania rather than Oryza. American rice is commercially harvested as a wild cereal (Dore, 1969), and since the late 1960's planted on a commercial scale. Zizania aquatica is the only grass species successfully domesticated as a cereal in historical times (de Wet and Oelke, 1979). It is grown in paddies as is rice. Paddies are flooded and seeded in late fall. Germination is rapid in spring and the water level is maintained until August when the crop matures. Fields are
then drained and harvested with a modified rice combine. Since the cultigen retains some degree of natural seed dispersal, no subsequent sowing is needed. Spikelets and straw are worked into the wet soil after harvest, where the caryopses lie dormant until the soil thaws in the next spring. Natural populations rarely yield more than 100 kg ha\(^{-1}\), while yields of 1000 kg ha\(^{-1}\) are obtained in planted paddies. Yields of at least 3000 kg ha\(^{-1}\) are possible from fully non-shattering cultivars.

MINOR CEREALS OF AFRICA

At least 60 grass species were extensively harvested in Africa as wild cereals until recent historical times (Busson, 1965; Jardin, 1967). The widely distributed *Brachiaria deflexa* (Schumach.) C.E. Hubbard, *Oryza barthii* A. Chev., and *Paspalum scrobiculatum* L. were extensively collected in West Africa. *Stipagrostis pungens* (Desf.) de Winter, and *Cenchrus biflorus* Roxb. were harvested by nomadic tribes in the Sahara. These species are often still encouraged as weeds in cultivated fields where they are harvested as wild cereals.

In West Africa, *Oryza barthii* Chev. gave rise under domestication to the cultivated *O. glaberrima* Steudel (Porteres, 1976). *Teff, Eragrostis tef* (Succ.) Trotter, is an important cereal in the Ethiopian highlands and was probably derived from *E. pilosa* (L.) P. Beauvois (de Wet, 1977; Costanza, de Wet and Harlan, 1979). The weedy *Brachiaria deflexa* (animal fonio) is cultivated on the Fouta-Djalon highlands of the west African savanna (Chevalier, 1933; Proteres, 1951). Animal fonio differs from wild *B. deflexa* only in having spikelets that disarticulate tardily at maturity.

Two other minor cereals are important crops in the west African savanna. Black fonio, *Digitaria iburua* Stapf is grown by the Hausa tribe of Nigeria, and occurs sporadically across most of semi-arid west Africa (Porteres, 1955; Clayton, 1972). It is often planted between rows of sorghum or pearl millet, and commonly as a mixture with *Digitaria exilis* (Kippist) Stapf (true fonio). Black fonio (*D. iburua*) is drought tolerant and often yields a harvest when the major cereal it accompanies fails to survive. True fonio (*D. exilis*) is widely grown across the west African savanna. It differs from *D. iburua* which has both glumes conspicuously shorter than the spikelet, in having the upper glume at least as long as the spikelet. Fonios are sown in west Africa during May or June, and harvested in September. Harvested inflorescences need to be protected from moisture since the grains become agglutinated to the lemma and palea when they get wet. Threshed grains are parched or dried in the sun before the chaff is removed by pounding in a wooden mortar. Fonio is used in stews, or the boiled grains are eaten as rice with butter or palm oil.

The most important minor cereal in Africa is finger millet, *Eleusine coracana* (L.) Gaertner. It was domesticated in Africa, but is also widely grown in south
Asia, particularly India (Hilu and de Wet, 1976a). The closest wild relative of finger millet is *E. coracana* subsp. *africana* (Kennedy-O’Byrne) Hilu and de Wet. Spontaneous finger millet is widely distributed along the eastern and southern highlands of Africa (Phillips, 1972). Derivatives of hybrids between cultivated and wild taxa are companion weeds of finger millet across most of its distribution in Africa.

Finger millet first occurs in the archaeological record of early African agriculture dating back some 3,000 years (Hilu and de Wet, 1976b), and was introduced into India at least 3,000 years ago (Vishnu-Mittre, 1968). Cultivated finger millet is extensively variable, and this variation is recognized as five races by de Wet, Prasada Rao, Brink and Mengesha (1984). Race *coracana* is widely distributed across the range of finger millet cultivation in Africa and Asia. It resembles wild finger millet in having five to nineteen slender inflorescence branches that are 6-11 cm long, digitately arranged, and with the tips often becoming slightly incurved or reflexed at time of maturity. Some genotypes differ phenotypically from subsp. *africana* primarily in being unable to disperse their spikelets without the help of man. Race *coracana* is particularly well adapted to agriculture in the eastern highlands of Africa and the Ghats of India. Some cultivars are drought tolerant and compete aggressively with weeds under conditions of traditional agriculture. It is often sown as a secondary crop with sorghum or pearl millet.

Races vulgaris, elongata, plana and compacta probably evolved from race *coracana* under cultivation. They probably evolved in Africa and were introduced into India. Little racial evolution took place in this secondary centre of cultivation. Race *elongata* is characterized by slender inflorescence branches that are 10-24 cm long. It is grown in eastern Africa and the eastern Ghats of India. Indian and African cultivars cannot consistently be separated on the basis of inflorescence morphology. Race *plana* is primarily African in distribution. It is grown in Ethiopia and Uganda, and to some extent in the eastern and western Ghats of India. Race *plana* is characterized by large, 8-15 mm long spikelets that are arranged in two more or less regular rows along the rachis, giving the inflorescence branches a flat ribbon-like appearance. In some genotypes the fertile florets are so numerous that they almost surround the rachis at maturity. These genotypes somewhat resemble race compacta, except that the inflorescence branches are not incurved. Members of race compacta are known as cockscomb finger millets in both Africa and India. Spikelets are up to ten flowered, with the inflorescence branches divided at the base and strongly incurved to form a fist-like inflorescence. Indian cultivars commonly have an inflorescence branch located some distance below the terminal cluster on each primary inflorescence axis. African cultivars usually lack this lower inflorescence branch. Race compacta is grown in northeastern India, Ethiopia and Uganda.
Race vulgaris is the most common finger millet of Africa and Asia. It is grown in Africa from Uganda to Ethiopia and to south Africa, and in Asia from India to Indonesia. Inflorescence branches are twisted or incurved. Some genotypes are drought tolerant, others are well adapted to areas of high rainfall, and still others are sown in nurseries and transplanted to fields with the first rains of the season. In rice-growing areas race vulgaris often follows irrigated rice as a rabi crop. Grains are cooked as rice, or ground into flour to make porridge or unleavened bread.

MINOR CEREALS OF EURASIA

Ten minor millets are grown in Asia. Their survival as cereals in competition with rice and wheat attests to the significance of these cereals in the agro-ecosystems of Asia. Two of these, Panicum miliaceum L. (broomcom or proso millet) and Setaria italica (L.) P. Beauv. (foxtail millet) are grown across temperate Eurasia, with foxtail millet extending into the semi-arid tropics of Asia. Other minor cereals are important in specialized agricultural niches in Asia.

Crabgrass or manna, Digitaria sanguinalis (L.) Scop. is a common weed in all temperate parts of the world. The species is morphologically variable and variously classified into subgenera and varieties (Gould, 1963). It is an annual grass with prostrate or decumbent stems, and flowering culms that can reach well over one metre in height. The species was harvested as a spontaneous semi-domesticate is southern Europe until the first quarter of this century (Werth, 1937). It is cultivated as a cereal in the Caucasus and Kashmir (Henrard, 1950; Bor, 1955). Crabgrass has been a crop for at least 2,000 years. Plinius who lived in the first century A.D. referred to the species as ischaemon and suggested that it was of Slavic origins (Kornicke and Werner, 1885). Matthiolius (1565) recorded that this cereal was grown in Bohemia, Slavonia and the Ukraine. Kornicke and Werner (1885) reported that in Hungary one hectare yielded 420-520 kg of grain and 780-1200 kg of hay. During the late nineteenth century the species was an important cereal in southeastern Europe (Ascherson and Graebner, 1890). Wild manna was harvested with a sickle before the plants were fully matured (Becker-Dillingen, 1927). It never lost the ability of natural seed dispersal. Little is known about its present cultivation in the Caucasus and Kashmir.

Another crabgrass, Digitaria cruciata (Nees) A. Camus, is cultivated by the Khasi tribes in Assam, where it is known as raishan. Hooker and Stapf (1895) recognized this cereal as a species of Paspalum and Bor (1940) mistakenly included it in Digitaria corymbosa (Roxb.) Merrill. Bor (1955) correctly transferred raishan to D. cruciata and recognized the cultivated kinds as var. esculenta Bor. Veldkamp (1973) described var. pectinata Veldkamp to include a cultivar with glutinous grains that was grown at Cha-Pa in northern Vietnam.
Raishan is an annual grass with prostrate to decumbent culms that root at the lower nodes, and that produce flowering culms up to 1.3 m tall. Inflorescences consist of two to ten racemes arranged on a 1-4 cm long central axis, with the racemes up to 18 cm long reflexed at maturity. The chartaceous lemma and palea tightly enclose the grain at maturity, but the grain is readily freed from this fruitcase by pounding in a mortar.

Raishan persists as a cereal in Assam probably because it provides excellent and essential feed for livestock during winter when grazing is scarce. It is commonly sown on land from which potatoes or other crops have been harvested. It is planted between early April and late June and harvested in November. In October the culms are tied together into bunches and allowed to mature. Individual plants produce as many as 30 flowering culms with each inflorescence maturing at a slightly different time. Spikelets are collected by hand about a month after the main inflorescence matures (Singh and Arora, 1972). Harvested spikelets are dried in the sun before they are stored, and usually parched over a fire before they are pounded in a mortar to remove the lemma and palea. The cleaned grains are boiled in a mixture with rice. Singh and Arora (1972) reported that raishan yields up to 800 kg ha−1. The species was probably domesticated by hill tribes in Assam and southeast Asia.

The genus *Echinochloa* is widely distributed, and includes some 20 species, several of which are aggressive weeds. The most obnoxious weed is *E. oryzaoides* (Ard.) Fritsch. It invades paddy rice, mimics the crop in vegetative morphology, and flowers a few days earlier than the cultivar it accompanies as a weed. Natural seed dispersal before the crop is harvested, and seed dormancy ensure a new population of *Echinochloa* weeds when rice is planted in the same field during the next growing season.

Barnyard millet, *E. crusgalli* (L.) P. Beauv., is a common weed of temperate and warm regions of the Old and New Worlds. The species is cultivated in China, Korea and Japan, where it is commonly known as Japanese millet. Archaeological records indicate that it was grown in Japan during the Yayoi period dating back some 5,000 years (Watanabe, 1970). Cultivated plants are erect, tufted annuals up to 1 m tall. Inflorescences are erect or slightly bent at maturity, with the ascending racemes often incurved at the tip. Spikelets are persistent and typically cuspidate.

The related *Echinochloa colona* (L.) Link was harvested as a wild cereal in predynastic Egypt (Dixon, 1969). Intestinal contents of mummies excavated at Naga ed-Der include, among other plant remains, recognizable grains of *E. colona*. It is a minor wild cereal in Central Africa where the grains are fermented to make beer (Tisserant, 1953). This cereal has as yet not been identified from among plant remains of the numerous farming sites excavated in India (Vishnu-Mittre, 1977). The species is, however, extensively grown in central India where it is commonly known as sawa (de Wet et al., 1983a).
Sawa differs from Japanese millet primarily in being a more tropical grass, and in lacking the beak to the spikelet that characterizes E. crusgalli. Both species have $2n = 54$ chromosomes, but hybrids between them are sterile (Yabuno, 1966). Sawa is an indigenous cereal in India. The species is weedy, spontaneously invades cultivated fields, and is often unintentionally harvested with other minor millets. Sawa is grown in India from Kashmir to Sikkim in the north, and to Tamil Nadu in the south. Cultivated kinds are extensively variable (de Wet et al., 1983a). The strongly branched racemes of some cultivars suggest affinities with Japanese millet, but E. crusgalli does not occur in India as a cereal.

Kodo millet, *Paspalum scrobiculatum* L., is another indigenous cultivated cereal of India. The species is widely distributed in damp habitats across the tropics and subtropics of the Old World. It is known to have been grown in southern Rajasthan and Maharashtra for at least 3,000 years (Kajale, 1977). It is grown today from Uttar Pradesh to Bangladesh in the north, and Kerala and Tamil Nadu in the south. This cereal is known as kodo in Hindi and varagu in Tamil. A small-seeded and large-seeded kind are recognized by farmers in Tamil Nadu.

Raceme morphology allows for the recognition of three cultivated complexes. The most common kodo millets are characterized by racemes with the spikelets arranged in two rows on one side of a flattened rachis, as is also typical of wild *P. scrobiculatum*. Two variations on this spikelet pattern often occur in the same field as the more common phenotype. In the one complex, spikelets are arranged in two to four irregular rows along the rachis. In the other complex, the lower part of each raceme has four irregularly arranged rows of spikelets, while spikelet arrangement becomes more regularly two-rowed in the upper part of the raceme (de Wet et al., 1983b). Hybridization between cultivated kinds, and between weedy and cultivated races is common. This explains the absence of clear racial differentiation, even after some 3,000 years of cultivation as a cereal in India.

Farmers believe that kodo millet is poisonous after a rain. It is known to produce unconsciousness, or delirium with violent tremors of the voluntary muscles. Kodo millet is cooked as rice. Bhide and Aimen (1959) suggested that the glumes, lemmas and paleas contain poisonous alkaloids. It is more likely that the poisoning results from a fungus that often invades, and eventually replaces the developing grain. The spore masses are about the same size as mature grains and are not easy to detect at harvest time. Removing the husks and winnowing scatter the spores, and only healthy grains remain to be used as food. Poisoning only occurs when the grains are damp at threshing, and the spores are not winnowed away.

Adlay, *Coix lacryma-jobi* L., is grown under shifting cultivation as a rainfed crop by the hill tribes of tropical Asia from Assam to the Philippines (Arora,
1977). The grains of wild adlay are enclosed in indurated involucres. Wild. C. *lacrimal-jobi* is called Job's tears, and the involucres of wild taxa are used to make rosaries and necklaces. Involucres are papery in most cultivars allowing for the ready removal of the grain. In Assam, the grain is ground into flour, and used to make bread, or a sweet dish is prepared by frying the grain and adding sugar. The whole grain is also eaten raw as a snack, or fermented to produce beer.

Two minor millets, *Setaria pumila* (Poir.) Roem. and Schult., and *Bracharia ramosa* (L.) Stapf, are indigenous as cereals to the hills of central India. As wild species, however, they are widely distributed in tropical Africa and Asia. Cultivated kinds are distinguished from their close wild relatives only in the absence of efficient natural seed dispersal. Complexes with various degrees of spikelet disarticulation commonly occur in the same field. Both species often occur as encouraged weeds in fields of finger or foxtail millets.

Two Eurasian cereal species are of commercial importance. These are *Setaria italica* (L.) P. Beauv. (foxtail millet), and *Panicum miliaceum* L. (broomcorn millet). Both species are extensively grown across temperate Eurasia, with foxtail millet extending into the tropics and sub-tropics of Asia.

The closest wild relative of foxtail millet is the weedy green foxtail, *Setaria italica* subsp. *viridis* (L.) Thellung. Green foxtail is native to temperate Eurasia, but was introduced and became widely established as a weed in temperate parts of the Americas. Wild and cultivated *S. italica* cross naturally to produce fertile hybrids (Li, Pao and Li, 1942; Li, Li and Pao, 1945; de Wet. Oestry-Stidd and Cubero, 1979). Derivatives of such hybrids are obnoxious weeds in the American corn belt (Pohl, 1966).

The antiquity of foxtail millet cultivation is uncertain. The species could have been domesticated anywhere across its natural range extending from Europe to Japan. It has been grown in China for at least 5,000 years (Ho, 1975). Jars filled with husks of foxtail millet were found at Ban-po in Shanxi province dating from the Yang-shao period (Nai, 1963; Chang, 1973). Foxtail millet also occurs in early agricultural sites from Switzerland and Austria dating back some 3,000 years (Werth, 1937). The species became widespread as a cereal in Europe during the Bronze age (van Zeist, 1970). It is absent from known early farming sites in India (Vishnu-Mittre, 1968). This, however, does not necessarily indicate a late introduction of foxtail millet into the tropics and subtropics of South Asia. Its wide distribution and morphological variation suggest a long history of cultivation in tropical Asia.

Foxtail millet is commonly classified into a European complex (race moharia) and a Far Eastern complex (race maxima). Race moharia includes cultivars with relatively small and erect inflorescences (Kornicke and Werner, 1885), while race maxima is characterized by large and pendulous inflorescences (Dekaprelevich and Kasparian, 1928). Two inflorescence types
of race maxima are recognized by Gritzenko (1960). Plants with small, essentially erect, and compact inflorescences occur in northwestern China and Mongolia. Plants from eastern China, Japan and Korea typically have large, compact, and pendulous inflorescences. Cultivars from India are morphologically distinct from those of Europe and the Far East, and are recognized as race indica by Prasada Rao et al. (1987). Plants are typically robust, with inflorescences bearing branches that are loosely arranged along the primary axis. Some collections from northern India resemble race maxima and probably represent introductions from China. Collections from Meghalaya have long, slender inflorescences with small spikelets. Two collections of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) from Karnataka have slender, erect, inflorescences with short lateral branches, somewhat resembling S. pumila in inflorescence and spikelet structure. These collections, however, have one to three bristles below each spikelet, whereas S. pumila has four or more bristles supporting each spikelet.

The progenitor of broomcorn millet (Panicum miliaceum) is native to Manchuria. The species was probably introduced into Europe as a cereal at least 3,000 years ago. Spikelets and florets of broomcorn millet occur together with remains of foxtail millet in early farming sites of the European neolithic. Neuweiler (1946) dated these sites to around 1600 B.C. During the Bronze age the species rapidly spread across Europe as a cereal (Hjelmquist, 1955).

Cultivated kinds of P. miliaceum are commonly subdivided into five subspecies (Lyssov, 1975). These are here recognized as races without taxonomic validity. Race miliaceum resembles wild P. miliaceum in inflorescence morphology. It is characterized by large, open inflorescences with suberect branches that are sparingly subdivided. Race patentissimum with its slender and diffused panicle branches is often difficult to distinguish from race miliaceum. These two races occur across the range of broomcorn millet cultivation from eastern Europe to Japan. Highly evolved cultivars of broomcorn millet have more or less compact inflorescences. These are classified into races contractum, compactum and ovatum. Cultivars included in race contractum have compact, drooping inflorescences. Those belonging to race compactum have cylindrical shaped inflorescences that are essentially erect. Cultivars with compact and slightly curved inflorescences that are ovate in shape are included in race ovatum.

Races have no ecogeographic unity. This probably is due to extensive movement of seed of the crop across Eurasia, particularly since early in this century. Lyssov (1975) illustrated 21 inflorescence types that are commonly grown in Eurasia.

A different Panicum species (sama) is grown as a cereal in the eastern Ghats of India (Rangaswami Ayyangar and Achyutha Wariar, 1941). This species, P. sumatrense Roth. ex Roem. and Schult., represents the
domesticated complex of the weedy *P. psilopodium* Trin. (de Wet, Prasada Rao and Brink, 1984). The commonly cultivated kind differs from wild *P. psilopodium* with which it crosses to produce fertile hybrids, primarily in having lost the ability of natural seed dispersal. This race of sama is highly tolerant to heat and drought stress. In more favourable agricultural habitats of the eastern Ghats a robust race of sama is grown. The inflorescences of this race are strongly branched and compact. Sama is often grown as a mixture with foxtail millet, pearl millet or sorghum.

LITERATURE CITED

Jardin, Hooker, J.D. and Ho, Helmquist, Hilu, K.W. Hilu, K.W. Henrard, J. Gritzenko, W.K.

Botany 899 pp.

241-244.

and

The Domestication and Exploitation of Plants and Animals. Aldin, Chicago. p. 131-142.

30 Small Millets

Watanabe, N. 1970. A spodographic analysis of millet from prehistoric Japan. Faculty of Science, University of Tokyo 5: 357-379.

II

IMPORTANTANCE, GERMPLASM AND VARIETAL IMPROVEMENT IN ASIA
SMALL MILLETS IN INDIAN AGRICULTURE

T.V. Sampath, S.M. Razvi, D.N. Singh and K.V. Bondale

INTRODUCTION

The term 'small millets' refers to a group of small-seeded cereal crops. The important small millets grown in India are finger millet (*Eleusine coracana*), foxtail millet (*Setaria italica*), kodo millet (*Paspalum scrobiculatum*), common or proso millet (*Panicum miliaceum*), little millet (*Panicum sumatrense*) and barnyard millet (*Echinochloa colona*).

Like grain sorghum and pearl millet, these crops not only form staple food for the farming community but also provide substantial quantities of palatable fodder for cattle. Small millet grains are nutritionally rich. Dietary surveys carried out by the National Institute of Nutrition, Hyderabad indicate that these grains are particularly low in phytic acid and rich in iron and calcium.

Small millets have a wide adaptation. They can withstand a certain degree of soil acidity and alkalinity, stress due to moisture and temperature, and variations in soils from heavy to sandy infertile soils. Small millets are grown from the extreme southern tip of India at sea level to the temperate north Himalayan areas up to an altitude of 3000 metres with consequent variation in photoperiod from short to long days.

Out of the total area of 126.67 million hectares in 1984-85 under foodgrain, the small millets area in India was just 5.78 million hectares or 4.56 per cent. In production, their contribution was 3.85 million tonnes or 2.63 per cent of the total of 146.22 million tonnes of foodgrain in the country. However, the contribution of small millets to total coarse cereal is 14.76 per cent in area and 12.36 per cent in production.

TRENDS IN AREA, PRODUCTION AND PRODUCTIVITY

The area under small millets has fluctuated between 8.00 and 5.76 million hectares during the period from 1949-50 to 1984-85. During the same period,
the production has fluctuated between 2.88 and 5.35 million tonnes. Yields have varied from 397 to 727 kg/ha. The five-year moving averages for area, production and productivity of small millets from 1951 to 1985 are given in Table 1.

<table>
<thead>
<tr>
<th>Period</th>
<th>Area (million ha)</th>
<th>Production (million tonnes)</th>
<th>Productivity (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-55</td>
<td>7.56</td>
<td>3.98</td>
<td>526</td>
</tr>
<tr>
<td>1956-60</td>
<td>7.48</td>
<td>3.83</td>
<td>512</td>
</tr>
<tr>
<td>1961-65</td>
<td>7.23</td>
<td>3.79</td>
<td>524</td>
</tr>
<tr>
<td>1966-70</td>
<td>7.01</td>
<td>3.45</td>
<td>492</td>
</tr>
<tr>
<td>1971-75</td>
<td>6.98</td>
<td>3.82</td>
<td>546</td>
</tr>
<tr>
<td>1976-80</td>
<td>6.99</td>
<td>4.37</td>
<td>635</td>
</tr>
<tr>
<td>1981-84</td>
<td>6.16</td>
<td>4.08</td>
<td>662</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture, Government of India.

The crop-wise data on area, production and yield for individual small millets are not available, except for finger millet. Therefore, the statistical data are given separately for finger millet and other small millets.

FINGER MILLET

The area under finger millet has fluctuated from 2.04 to 3.2 million hectares in different years during 1950-85 and the production has fluctuated from 1.31 to 3.20 million tonnes. The increase in production is mainly due to the raise in productivity from 704 kg/ha during 1950-55 to 1056 kg/ha during 1981-84 (Table 2). It is interesting to note that during the last decade, from 1975 to

<table>
<thead>
<tr>
<th>Period</th>
<th>Area ('000 ha)</th>
<th>Production ('000 t)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-55</td>
<td>2274</td>
<td>1605</td>
<td>704</td>
</tr>
<tr>
<td>1956-60</td>
<td>2454</td>
<td>1873</td>
<td>764</td>
</tr>
<tr>
<td>1961-65</td>
<td>2555</td>
<td>1888</td>
<td>743</td>
</tr>
<tr>
<td>1966-70</td>
<td>2282</td>
<td>1721</td>
<td>754</td>
</tr>
<tr>
<td>1971-75</td>
<td>2523</td>
<td>2343</td>
<td>927</td>
</tr>
<tr>
<td>1976-80</td>
<td>2590</td>
<td>2650</td>
<td>1021</td>
</tr>
<tr>
<td>1981-84</td>
<td>2492</td>
<td>2636</td>
<td>1056</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture, Government of India.
1985, there was negligible growth rate in area under coarse cereals. The annual growth rate in area under finger millet was 0.23 per cent as against 0.71 per cent under total foodgrains. Similarly, the annual growth rate for production was 1.78 per cent for finger millet as against 1.46 per cent for other coarse cereals and 2.62 per cent for total foodgrains. The annual rate of improvement in yield was 1.55 per cent for finger millet, 1.32 per cent for coarse cereals and 1.67 per cent for total foodgrains.

In India, finger millet is cultivated in many States—Karnataka, Tamil Nadu, Andhra Pradesh, Orissa, Maharashtra, Uttar Pradesh, Bihar and Gujarat. These eight States, together account for more than 95 per cent of the total area under this crop. Karnataka has the largest area of more than 40 per cent followed by Orissa, Tamil Nadu and Andhra Pradesh with 12.46, 10.3 and 9.2 per cent respectively. The above mentioned eight States account for more than 98.13 per cent of the total finger millet production in the country. Among them, Karnataka and Tamil Nadu are the major contributors accounting for 56.17 per cent of the total production. The relative contribution of Orissa, Maharashtra, Uttar Pradesh, Bihar and Gujarat to the total production is less than the area occupied by these States. The yields in Tamil Nadu, Maharashtra, Karnataka are higher than the national average. Tamil Nadu has the highest yield followed by Karnataka and Maharashtra. The area, production and yield of finger millet in each state during the years 1980-84 are given in Table 3.

Other small millets

The other small millets—foxtail, kodo, common, little and barnyard are mainly grown in Madhya Pradesh, Andhra Pradesh, Tamil Nadu, Karnataka, Gujarat, Uttar Pradesh, Maharashtra and Orissa. They are also grown in small patches in the hilly regions of Himachal Pradesh, Uttar Pradesh, Jammu & Kashmir and the northeastern States. These millets are grown during Kharif (rainy season) and sown with the onset of the southwest monsoon. The area, production and yield of other small millets during the period from 1975-85 are given in Table 4. During the last 35 years, the area, production and yield of small millets have registered negative growth rates as compared to other coarse cereals and total foodgrain. As a result, the area under these crops is declining. The average area during the five years 1951-56 was 5.29 million ha which gradually declined to 3.66 million ha during 1980-85. This works out to 27 per cent fall in area during this period. Similarly, the average production during this period, came down from 2.18 million tonnes to 1.49 million tonnes. The yield of these crops has remained more or less stagnant.

The major area under small millets is in the States of Andhra Pradesh, Bihar, Gujarat, Karnataka, Madhya Pradesh, Maharashtra, Orissa, Tamil Nadu and Uttar Pradesh. These states account for 96.28 per cent of the area and 93.38 per cent of the production. The largest area is in Madhya Pradesh, which accounts for 42 per cent of the total area in the country, but contributes only
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Andhra Pradesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>254.1</td>
<td>258.9</td>
<td>242.0</td>
<td>255.3</td>
<td>220.8</td>
<td>9.20</td>
</tr>
<tr>
<td>P</td>
<td>245.3</td>
<td>286.9</td>
<td>233.4</td>
<td>262.6</td>
<td>209.4</td>
<td>8.27</td>
</tr>
<tr>
<td>Y</td>
<td>965</td>
<td>1108</td>
<td>964</td>
<td>1029</td>
<td>948</td>
<td></td>
</tr>
<tr>
<td>2. Bihar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>177.4</td>
<td>168.8</td>
<td>138.2</td>
<td>150.9</td>
<td>131.0</td>
<td>5.50</td>
</tr>
<tr>
<td>P</td>
<td>114.2</td>
<td>93.6</td>
<td>74.9</td>
<td>104.4</td>
<td>103.0</td>
<td>4.00</td>
</tr>
<tr>
<td>Y</td>
<td>644</td>
<td>555</td>
<td>542</td>
<td>692</td>
<td>786</td>
<td></td>
</tr>
<tr>
<td>3. Gujarat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>50.0</td>
<td>47.4</td>
<td>47.8</td>
<td>45.0</td>
<td>44.6</td>
<td>1.80</td>
</tr>
<tr>
<td>P</td>
<td>35.6</td>
<td>48.7</td>
<td>43.2</td>
<td>49.1</td>
<td>44.2</td>
<td>1.75</td>
</tr>
<tr>
<td>Y</td>
<td>712</td>
<td>1027</td>
<td>904</td>
<td>1091</td>
<td>991</td>
<td></td>
</tr>
<tr>
<td>4. Himachal Pradesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>10.6</td>
<td>9.8</td>
<td>8.6</td>
<td>8.2</td>
<td>7.7</td>
<td>0.30</td>
</tr>
<tr>
<td>P</td>
<td>7.8</td>
<td>5.9</td>
<td>6.1</td>
<td>7.1</td>
<td>6.7</td>
<td>0.26</td>
</tr>
<tr>
<td>Y</td>
<td>736</td>
<td>602</td>
<td>790</td>
<td>866</td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>5. Karnataka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1062.9</td>
<td>1148.3</td>
<td>1030.3</td>
<td>1124.6</td>
<td>988.3</td>
<td>41.40</td>
</tr>
<tr>
<td>P</td>
<td>1094.1</td>
<td>1427.8</td>
<td>944.5</td>
<td>1434.1</td>
<td>1112.6</td>
<td>43.93</td>
</tr>
<tr>
<td>Y</td>
<td>1029</td>
<td>1243</td>
<td>917</td>
<td>1275</td>
<td>1126</td>
<td></td>
</tr>
<tr>
<td>6. Madhya Pradesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>20.4</td>
<td>20.2</td>
<td>20.6</td>
<td>20.5</td>
<td>19.6</td>
<td>0.80</td>
</tr>
<tr>
<td>P</td>
<td>5.5</td>
<td>5.2</td>
<td>5.5</td>
<td>5.9</td>
<td>4.9</td>
<td>0.20</td>
</tr>
<tr>
<td>Y</td>
<td>270</td>
<td>257</td>
<td>267</td>
<td>288</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>7. Maharashtra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>221.4</td>
<td>225.2</td>
<td>225.8</td>
<td>228.1</td>
<td>227.4</td>
<td>9.50</td>
</tr>
<tr>
<td>P</td>
<td>209.6</td>
<td>228.0</td>
<td>215.0</td>
<td>240.9</td>
<td>261.9</td>
<td>10.34</td>
</tr>
<tr>
<td>Y</td>
<td>947</td>
<td>1012</td>
<td>952</td>
<td>1056</td>
<td>1152</td>
<td></td>
</tr>
<tr>
<td>8. Orissa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>336.4</td>
<td>288.9</td>
<td>298.5</td>
<td>297.5</td>
<td>297.5</td>
<td>12.46</td>
</tr>
<tr>
<td>P</td>
<td>264.8</td>
<td>238.1</td>
<td>244.0</td>
<td>270.9</td>
<td>270.9</td>
<td>10.70</td>
</tr>
<tr>
<td>Y</td>
<td>787</td>
<td>824</td>
<td>817</td>
<td>911</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Region</td>
<td>A (ha)</td>
<td>P (tonnes)</td>
<td>Y (kg/ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tamil Nadu</td>
<td>192.8</td>
<td>245.5</td>
<td>206.1</td>
<td>232.5</td>
<td>247.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>251.4</td>
<td>448.5</td>
<td>273.0</td>
<td>250.9</td>
<td>310.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1304</td>
<td>1827</td>
<td>1325</td>
<td>1079</td>
<td>1255</td>
</tr>
<tr>
<td>10</td>
<td>Uttar Pradesh</td>
<td>170.5</td>
<td>163.4</td>
<td>162.9</td>
<td>165.4</td>
<td>170.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>164.2</td>
<td>145.5</td>
<td>155.6</td>
<td>177.0</td>
<td>174.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>963</td>
<td>890</td>
<td>955</td>
<td>1070</td>
<td>1026</td>
</tr>
<tr>
<td>11</td>
<td>West Bengal</td>
<td>16.2</td>
<td>16.8</td>
<td>14.3</td>
<td>13.6</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.8</td>
<td>9.7</td>
<td>8.3</td>
<td>9.0</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>605</td>
<td>577</td>
<td>580</td>
<td>662</td>
<td>691</td>
</tr>
<tr>
<td></td>
<td>All India</td>
<td>2525.0</td>
<td>2610.4</td>
<td>2411.7</td>
<td>2558.2</td>
<td>2387.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2419.9</td>
<td>2960.4</td>
<td>2223.1</td>
<td>2831.0</td>
<td>2532.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>958</td>
<td>1134</td>
<td>922</td>
<td>1107</td>
<td>1060</td>
</tr>
</tbody>
</table>

A = Area in 000 ha; P = Production in 000 tonnes; Y = Yield in kg/ha

Source: Ministry of Agriculture, Government of India.
TABLE 4
Moving five year averages for area, production and yield of other small millets

<table>
<thead>
<tr>
<th>Period</th>
<th>Area (000 ha)</th>
<th>Production (000 tonnes)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-55</td>
<td>5290</td>
<td>2177</td>
<td>410</td>
</tr>
<tr>
<td>1956-60</td>
<td>5022</td>
<td>1955</td>
<td>389</td>
</tr>
<tr>
<td>1961-65</td>
<td>4677</td>
<td>1889</td>
<td>404</td>
</tr>
<tr>
<td>1966-70</td>
<td>4729</td>
<td>1733</td>
<td>366</td>
</tr>
<tr>
<td>1971-75</td>
<td>4565</td>
<td>1781</td>
<td>390</td>
</tr>
<tr>
<td>1976-80</td>
<td>4328</td>
<td>1743</td>
<td>402</td>
</tr>
<tr>
<td>1981-84</td>
<td>3574</td>
<td>1465</td>
<td>408</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture, Government of India.

25 per cent to the total production. This is because of low yield of 233 kg/ha as against the national average of 389 kg/ha.

The area, production and yield of small millets in each state during the years 1980-84 are given in Table 5.

FACTORs LIMITING PRODUCTIVITY

Production of small millets is subject to wide fluctuations, and the area is declining, except in the case of finger millet. The major constraints limiting small millets production are:

1) These crops are often grown in uneven marginal lands, poor in fertility, shallow and gravelly, with low moisture retention capacity.

2) These crops are grown under rainfed conditions in low rainfall arid regions.

3) Improved crop management practices are not adopted by the farmers due to socio-economic constraints.

4) Research on crop improvement and agro-techniques was neglected till recently.

5) There is no organized programme for production and supply of seeds of improved varieties.

6) There is no ready market for the disposal of surplus produce at a remunerative price.

7) There is lack of extension and development support.

NEED FOR INCREASING PRODUCTION

These constraints create imbalance in the food economy of poor and tribal farmers as small millets are predominantly grown in marginal and submarginal dry lands. The fluctuations in production not only bring hardship to people and animals, but also create instability in the total coarse cereal production.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>P</td>
<td>Y</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>551.1</td>
<td>170.7</td>
<td>310</td>
<td>603.5</td>
<td>371.0</td>
<td>615</td>
</tr>
<tr>
<td>Assam</td>
<td>8.4</td>
<td>4.1</td>
<td>488</td>
<td>-8.1</td>
<td>-4.1</td>
<td>406</td>
</tr>
<tr>
<td>Bihar</td>
<td>194.4</td>
<td>52.8</td>
<td>353</td>
<td>136.8</td>
<td>54.5</td>
<td>398</td>
</tr>
<tr>
<td>Gujarat</td>
<td>135.3</td>
<td>106.7</td>
<td>789</td>
<td>140.5</td>
<td>109.4</td>
<td>779</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>22.8</td>
<td>15.0</td>
<td>658</td>
<td>22.0</td>
<td>9.1</td>
<td>414</td>
</tr>
<tr>
<td>Jammu & Kashmir</td>
<td>18.0</td>
<td>11.7</td>
<td>650</td>
<td>15.9</td>
<td>9.6</td>
<td>604</td>
</tr>
<tr>
<td>Karnataka</td>
<td>364.3</td>
<td>140.4</td>
<td>385</td>
<td>377.7</td>
<td>149.2</td>
<td>395</td>
</tr>
<tr>
<td>Kerala</td>
<td>2.4</td>
<td>1.6</td>
<td>667</td>
<td>2.7</td>
<td>1.7</td>
<td>630</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>A 1448.5</td>
<td>1453.8</td>
<td>1438.6</td>
<td>1446.5</td>
<td>1426.6</td>
<td>42.05</td>
</tr>
<tr>
<td></td>
<td>P 314.7</td>
<td>338.4</td>
<td>287.1</td>
<td>394.3</td>
<td>330.1</td>
<td>25.02</td>
</tr>
<tr>
<td></td>
<td>Y 217</td>
<td>233</td>
<td>200</td>
<td>273</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Maharashtra</td>
<td>A 199.3</td>
<td>194.4</td>
<td>172.4</td>
<td>200.9</td>
<td>158.9</td>
<td>4.68</td>
</tr>
<tr>
<td></td>
<td>P 78.7</td>
<td>78.5</td>
<td>74.9</td>
<td>110.7</td>
<td>75.6</td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td>Y 395</td>
<td>404</td>
<td>434</td>
<td>551</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>Meghalaya</td>
<td>A 2.7</td>
<td>2.8</td>
<td>2.8</td>
<td>2.9</td>
<td>2.5</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>P 2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.6</td>
<td>2.4</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Y 1000</td>
<td>964</td>
<td>964</td>
<td>897</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>Orissa</td>
<td>A 362.3</td>
<td>154.2</td>
<td>162.3</td>
<td>178.2</td>
<td>178.2</td>
<td>5.25</td>
</tr>
<tr>
<td></td>
<td>P 197.5</td>
<td>71.4</td>
<td>74.0</td>
<td>178.0</td>
<td>178.0</td>
<td>13.49</td>
</tr>
<tr>
<td></td>
<td>Y 5454</td>
<td>463</td>
<td>456</td>
<td>999</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>Rajasthan</td>
<td>A 46.9</td>
<td>48.6</td>
<td>43.6</td>
<td>45.2</td>
<td>37.8</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>P 3.8</td>
<td>7.7</td>
<td>5.2</td>
<td>22.2</td>
<td>15.1</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>Y 81</td>
<td>158</td>
<td>191</td>
<td>491</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>A 272.6</td>
<td>267.7</td>
<td>276.2</td>
<td>301.7</td>
<td>271.4</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>P 213.9</td>
<td>206.3</td>
<td>201.3</td>
<td>193.1</td>
<td>145.1</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>Y 773</td>
<td>771</td>
<td>729</td>
<td>640</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>A 360.2</td>
<td>328.5</td>
<td>291.7</td>
<td>296.0</td>
<td>283.1</td>
<td>8.34</td>
</tr>
<tr>
<td></td>
<td>P 237.3</td>
<td>201.1</td>
<td>188.3</td>
<td>197.6</td>
<td>179.3</td>
<td>13.59</td>
</tr>
<tr>
<td></td>
<td>Y 659</td>
<td>613</td>
<td>646</td>
<td>668</td>
<td>663</td>
<td></td>
</tr>
<tr>
<td>West Bengal</td>
<td>A 10.3</td>
<td>10.1</td>
<td>8.6</td>
<td>7.7</td>
<td>13.3</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>P 7.1</td>
<td>7.3</td>
<td>5.7</td>
<td>4.0</td>
<td>7.8</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>Y 689</td>
<td>723</td>
<td>663</td>
<td>519</td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>Arunachal Pradesh</td>
<td>A 16.9</td>
<td>18.0</td>
<td>18.0</td>
<td>20.8</td>
<td>21.7</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>P 14.8</td>
<td>15.8</td>
<td>17.3</td>
<td>14.8</td>
<td>16.2</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>Y 878</td>
<td>878</td>
<td>961</td>
<td>712</td>
<td>747</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dadra & Nagar Haveli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>P</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Y</td>
<td>500</td>
<td>500</td>
<td>1000</td>
<td>750</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

A = Area in 000 ha, P = Production in 000 tonnes; Y = Yield in kg/ha

Source: Ministry of Agriculture, Government of India.
Realising the role of these crops to Indian agriculture, during the Seventh Five Year Plan, it is proposed to increase the production of finger millet and other small millets from 3.85 million tonnes in 1984-85 to 5.0 million tonnes by 1989-90.

Strategy

The main thrust or strategy for increasing the production of small millets during the Seventh Five Year Plan would be through stabilizing the productivity at a higher level. Crop-wise production plans have been prepared indicating the requirement of various inputs like seed, fertilizer, pesticides and credit. The broad outlines are as follows:

1) Expansion of area under improved varieties through their popularization.
2) Production and supply of seeds of improved varieties in sufficient quantities to the farmers.
3) Conservation of soil moisture and its utilization by the adoption of dry farming techniques.
4) Adoption of integrated watershed concept to enhance production and productivity.
5) Adoption of recommended package of practices with special reference to non-monetary inputs like optimum plant population, timely weed, pest and disease control through cultural management.
6) Popularization of low-cost technology through full extension support.
7) Remunerative price and marketing facilities.
8) Intensification of location specific research for development of varieties and low cost technologies for stabilizing production at higher levels.

Developmental efforts

New production technologies developed by scientists are being popularized, through the Central Sector Schemes consisting of Minikit Demonstrations and State Level Training.

Minikit demonstrations aim at quickly popularising the newly released and pre-release varieties among the farming community all over the country and to get farmers’ reaction towards such new plant materials before they are taken up for large-scale cultivation. The millets minikit demonstrations were started in 1974-75. Under this programme, kits containing small quantities of seeds of improved varieties are supplied free of cost for demonstration purposes to farmers.

The scheme has been widely welcomed, particularly by the small farmers and has resulted in the quick acceptance and spread of some of the latest varieties.

In recent years, the minikit programme has been further enlarged and the number of minikits for finger millet has been increased from 2,700 in 1980-81 to 38,000 in 1985-86. The target for 1986-87 is to distribute 37,200 minikits.
Similarly, in other small millets, the number of minikits distributed has increased from 386 in 1980-81 to 4,708 in 1985-86. For 1986-87, it is planned to distribute 31,430 minikits.

State level training programmes are being regularly organized in recent years to disseminate the latest technology developed by the State Agricultural Universities, and by the Indian Council of Agricultural Research to the field staff and to provide feedback information to the research scientists from the practical field workers. State Level Training Programmes on production technology of finger millet and small millets are organized every year in all states, in collaboration with the Agricultural Universities, Central Research Institutions, other Research Organizations and the State Departments of Agriculture, for the benefit of the extension officers.

CONCLUSIONS

The area under small millets has come down from 5.68 million ha to 3.4 million ha. Further reduction in the area of these crops may not be possible as there are no alternate crops for substitution in these areas of very low rainfall and poor soils. Recently, new high yielding varieties have been developed in various small millets but they have not yet reached the farmers. Intensive efforts should be made to popularize the same with the farmers and to replace the low yielding local varieties. For this purpose, systematic follow-up action is required for the production of seeds at various stages, its processing and distribution. The improved seed either should be supplied free or subsidized by the Government.

The role of non-monetary inputs such as line sowing, optimum row spacing, depth of seeding, optimum plant population per unit area, timely cultural practices for higher productivity should be explained and demonstrated to the farmers right in the field.

Agronomic research should bring out efficient low-cost technology which is within the means of farmers and easy to adopt. Increased use of small millets in various ready-to-eat food products should be encouraged as it enhances their value and market price.
4

GENETIC RESOURCES OF SMALL MILLETS IN INDIA

A. Seetharam

INTRODUCTION

In many parts of India six small millet crops are cultivated for grain and fodder. They are finger millet or ragi (*Eleusine coracana*), Italian or foxtail millet (*Setaria italica*), common or proso millet (*Panicum miliaceum*), kodo millet (*Paspalum scrobiculatum*), little millet (*Panicum miliare*) (renamed *P. sumatrense*) and barnyard millet (*Echinochloa frumentacea*) (renamed *E. colona*). These crops occupy 4.5 per cent of the cultivated area and are mostly confined to semi-arid zones and hilly areas. On an average, around 6 million ha are planted under these crops every year, of which finger millet alone occupies around 2.5 million ha, followed by kodo millet, foxtail millet, little millet, proso millet and barnyard millet, in that order. One or more of these crops are grown in each state under diverse agroclimatic conditions (Hegde and Seetharam, 1985).

Systematic improvement in small millets has not been attempted until very recently in India. Obviously, the varieties cultivated are local land races, which are the result of indirect human and natural selection over a long period of time (Seetharam, 1983a). The success of any crop improvement programme depends on the availability of diverse germplasm.

As the small millets are indispensable to Indian agriculture there is increasing realization of the need to improve the productivity of these crops through modern methods of breeding. As the germplasm is the basic raw material, one has to bank upon a broad genetic base now and in the future. Therefore collection of germplasm is necessary, which then needs to be conserved, evaluated and distributed. There is overwhelming evidence in the literature to indicate that genetic diversity is rapidly eroding in many areas of the world. This is
especially relevant with small millets, where very little of the available vast natural variations have been explored, studied and utilized. Further, there is an immediate need to conserve the genetic resources of small millets, since areas under these crops are gradually depleting in many states. Realizing the gravity of the situation. The All India Coordinated Small Millets Improvement Project under the aegis of the Indian Council of Agricultural Research has established in Bangalore, a germplasm unit, for the conservation of small millets genetic resources in the country. The Unit has been making efforts since 1980 to pool all the available germplasm in the country and conserve them (Seetharam, 1982). The triple functions of the unit are to:

1) collect the genetic resources of small millets and conserve them,
2) function as a service unit and supply genetic stocks to scientists as and when required, and
3) evaluate, characterize and document the material.

GERmplASM AVAILABLE

Presently 9,443 collections are maintained. This includes 4,490 in finger millet, 1,951 in foxtail millet, 644 in little millet, 577 in proso millet, 816 in barnyard millet and 965 in kodo millet. Table 1 lists the material assembled by place of origin. In addition to the above 50 collections of brown top millet (Brachiaria ramosa) are also maintained.

The collections received initially from the Rockefeller Foundation during the early 1970’s formed the base genetic stocks. This was further augmented by pooling stocks that were available at various research centres in the country. Collections made by NBPGR, New Delhi, in their regular collection missions within the country are sent to Bangalore periodically and this has broadened the germplasm base. It is possible that the collections include many duplicates. However, it is rather difficult to eliminate all duplicates. It is also likely that the accessions that appear similar phenotypically might differ in micromorphological and polygenic characters. Hence, elimination of all duplicates by visual observation alone is not advisable.

The germplasm represents reasonably diverse material, collected from various regions within and outside the country. Indigenous finger millet accessions are quite comprehensive and large except for a few deficiencies. For example, representations from Gujarat, Himachal Pradesh, Maharashtra, Madhya Pradesh and northeastern regions of India are inadequate. In other small millets, the collections are much less comprehensive. To fill these gaps priority areas for exploration within the country have been identified. The germplasm Unit at Bangalore, even with its limited resources has been making efforts for collection within the country. At least one collection expedition is undertaken every year and in the last four years Andhra Pradesh, Karnataka, Tamil Nadu, Orissa and parts of Bihar and Uttar Pradesh have been explored (Aradhya et al., 1983 and Patnaik et al., 1983)
TABLE 1
Germpiasm collections at small millets germplasm unit, Bangalore 1986

<table>
<thead>
<tr>
<th>Country/State</th>
<th>Finger millet</th>
<th>Foxtail millet</th>
<th>Little millet</th>
<th>Proso millet</th>
<th>Barnyard millet</th>
<th>Kodo millet</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Indian collections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>191</td>
<td>241</td>
<td>38</td>
<td>135</td>
<td>9</td>
<td>99</td>
</tr>
<tr>
<td>Bihar</td>
<td>140</td>
<td>68</td>
<td>59</td>
<td>28</td>
<td>194</td>
<td>39</td>
</tr>
<tr>
<td>Gujarat</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>3</td>
<td>14</td>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jammu & Kashmir</td>
<td>3</td>
<td>16</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karnataka</td>
<td>425</td>
<td>173</td>
<td>71</td>
<td>5</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Kerala</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEHR regions</td>
<td>65</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orissa</td>
<td>75</td>
<td>19</td>
<td>83</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Punjab</td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajasthan</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>392</td>
<td>96</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>856</td>
<td>863</td>
<td>15</td>
<td>6</td>
<td>411</td>
<td>147</td>
</tr>
<tr>
<td>West Bengal</td>
<td>12</td>
<td>27</td>
<td>8</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Indian—statewise</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source not known</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Exotic collections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afghanistan</td>
<td></td>
<td>2</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td></td>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethiopia</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td>16</td>
<td></td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>228</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malawi</td>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uganda</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USSR</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other African</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Source not known</td>
<td>1162</td>
<td>42</td>
<td>17</td>
<td>376</td>
<td>28</td>
<td>18</td>
</tr>
</tbody>
</table>

| Total | 4490 | 1951 | 644 | 577 | 816 | 965 |
STORAGE AND SUPPLY

The small millet grains have a relatively, long shelf-life. Even under ambient conditions the seeds stored in plastic containers, remain viable up to three years or even more. In Bangalore, the collections are stored in short-term store rooms with temperature maintained at $15^\circ \pm 2^\circ$C and relative humidity of 40 ± 5 per cent.

During the period 1981-86, a total of 8,654 accessions were supplied to scientists all over the world on request (Table 2). The operational flow chart in Fig. 1 depicts the way accessions are handled and maintained at Bangalore.

TABLE 2
Supply of small millets germplasm within and outside India, 1981-1986

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger millet</td>
<td>615</td>
<td>672</td>
<td>666</td>
<td>568</td>
<td>863</td>
<td>783</td>
<td>4167</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>279</td>
<td>143</td>
<td>48</td>
<td>363</td>
<td>123</td>
<td>311</td>
<td>1267</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>184</td>
<td>56</td>
<td>38</td>
<td>135</td>
<td>85</td>
<td>100</td>
<td>598</td>
</tr>
<tr>
<td>Little millet</td>
<td>177</td>
<td>3</td>
<td>38</td>
<td>286</td>
<td>351</td>
<td>29</td>
<td>885</td>
</tr>
<tr>
<td>Proso millet</td>
<td>177</td>
<td>75</td>
<td>49</td>
<td>365</td>
<td>106</td>
<td>32</td>
<td>804</td>
</tr>
<tr>
<td>Barnyard millet</td>
<td>175</td>
<td>13</td>
<td>16</td>
<td>160</td>
<td>104</td>
<td>75</td>
<td>543</td>
</tr>
<tr>
<td>Total</td>
<td>1607</td>
<td>962</td>
<td>856</td>
<td>1877</td>
<td>1632</td>
<td>1330</td>
<td>8264</td>
</tr>
</tbody>
</table>

BREEDING MATERIAL
DIRECT FIELD COLLECTIONS
ACCESSIONS FROM OTHER GENE BANKS BY EXCHANGE
N.B.P.G.R AND OTHER UNIVERSITIES

REGISTRATION
SEED INCREASE AND OBSERVATION
SHORT TERM STORAGE
EVALUATION AND DOCUMENTATION
SUPPLY

OPERATIONAL FLOW CHART
SMALL MILLETS GERMPLASM UNIT, BANGALORE
SEED INCREASE

At present accessions are grown once in three years for rejuvenation and seed multiplication. Each year about 3,000 accessions are grown. Maintenance of genetic purity has not been a problem in small millets in view of the essentially self-pollinating nature of these crops. It may be possible to rejuvenate accessions once in five years instead of every three years as is done now, once information is obtained on the duration of viability of seeds stored at 15°C with 40 per cent RH.

CHARACTERIZATION OF GERMPLASM

Characterization, classification and cataloguing of the germplasm is slowly gaining momentum. Standard descriptors covering agronomic, morphological, physiological and quality characters have been developed and published for all six millets by the International Bureau of Plant Genetic Resources, FAO, Rome. Using these descriptors, most of the finger millet, and part of the foxtail millet and little millet collections have been preliminarily evaluated and grouped for characters having very high heritability and stability of expression (Tables 3, 7 and 10). However, detailed evaluation of all accessions remains

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Preliminary evaluation and grouping of 4084 accessions of finger millet</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Ear emergence</td>
<td>Complete = 3985</td>
</tr>
<tr>
<td>Partial = 99</td>
<td></td>
</tr>
<tr>
<td>II. Nodal tillering</td>
<td>Present = 4041</td>
</tr>
<tr>
<td>Absent = 43</td>
<td></td>
</tr>
<tr>
<td>III. Synchrony at maturity</td>
<td>Synchronous = 639</td>
</tr>
<tr>
<td>Non-synchronous = 3445</td>
<td></td>
</tr>
<tr>
<td>IV. Finger branching</td>
<td>Absent = 3572</td>
</tr>
<tr>
<td>Present = 512</td>
<td></td>
</tr>
<tr>
<td>V. No. of seeds per spikelet</td>
<td>Low (3–5) = 1753</td>
</tr>
<tr>
<td>Medium (5–6) = 1881</td>
<td></td>
</tr>
<tr>
<td>High (7) = 450</td>
<td></td>
</tr>
<tr>
<td>VI. Gapiness on ear</td>
<td>Absent = 4000</td>
</tr>
<tr>
<td>Present = 84</td>
<td></td>
</tr>
<tr>
<td>VII. Ear compactness and shape</td>
<td>Long, dropping = 53</td>
</tr>
<tr>
<td>open, straight = 454</td>
<td></td>
</tr>
<tr>
<td>compact tip curved = 2150</td>
<td></td>
</tr>
<tr>
<td>compact incurved = 1299</td>
<td></td>
</tr>
<tr>
<td>fist = 128</td>
<td></td>
</tr>
<tr>
<td>VIII. Pigmentation at node</td>
<td>Green = 2716</td>
</tr>
<tr>
<td>Purple = 1368</td>
<td></td>
</tr>
<tr>
<td>IX. Ear pigmentation</td>
<td>Green = 2578</td>
</tr>
<tr>
<td>yellow green = 195</td>
<td></td>
</tr>
<tr>
<td>light purple = 1234</td>
<td></td>
</tr>
<tr>
<td>dark purple = 77</td>
<td></td>
</tr>
<tr>
<td>X. Glume size</td>
<td>Normal = 4030</td>
</tr>
<tr>
<td>Long = 54</td>
<td></td>
</tr>
</tbody>
</table>
to be done for assessing the breeding value of various collections and for identifying sources of useful genes.

A cross-section of 1,941 accessions of ragi germplasm was scored for different forms of blast disease and many stable sources of resistance for blast have been identified (Seetharam, 1983b) (Tables 4 and 5). Finger millet accessions especially from Africa possess genes for blast resistance, robust growth, early vigour, large panicle size, finger number and branching and higher grain density. A few accessions identified already as sources of useful genes are being extensively involved in hybridization programme at many centres. Similarly accessions possessing high protein and desirable physiological attributes, with high carbon dioxide fixation and low leaf area suitable for rainfed conditions have been identified (Sashidhar et al., 1986 and Seetharam et al., 1984). Long glume types with higher test weight will be of special interest for improving seed size (Sashidar et al., 1983) (Table 6).

In foxtail millet, new sources of dwarfing genes controlled by oligogenes have been identified (Byre Gowda et al., 1986). The plant type of these accessions are very similar to dwarf wheat or rice and they should form very

<table>
<thead>
<tr>
<th>Forms of blast</th>
<th>number</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Leaf blast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>resistant</td>
<td>18</td>
<td>0.93</td>
</tr>
<tr>
<td>moderately resistant</td>
<td>109</td>
<td>5.62</td>
</tr>
<tr>
<td>moderately susceptible</td>
<td>310</td>
<td>15.98</td>
</tr>
<tr>
<td>susceptible</td>
<td>671</td>
<td>34.57</td>
</tr>
<tr>
<td>highly susceptible</td>
<td>833</td>
<td>42.92</td>
</tr>
<tr>
<td>B. Neck blast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 1%</td>
<td>281</td>
<td>14.48</td>
</tr>
<tr>
<td>1 = 5%</td>
<td>420</td>
<td>21.64</td>
</tr>
<tr>
<td>5 = 10%</td>
<td>397</td>
<td>20.46</td>
</tr>
<tr>
<td>10 = 20%</td>
<td>431</td>
<td>22.21</td>
</tr>
<tr>
<td>more than 20%</td>
<td>412</td>
<td>21.23</td>
</tr>
<tr>
<td>C. Finger blast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 1%</td>
<td>30</td>
<td>1.55</td>
</tr>
<tr>
<td>1 = 5%</td>
<td>372</td>
<td>19.17</td>
</tr>
<tr>
<td>5 = 10%</td>
<td>491</td>
<td>25.30</td>
</tr>
<tr>
<td>10 = 20%</td>
<td>542</td>
<td>27.93</td>
</tr>
<tr>
<td>more than 20%</td>
<td>506</td>
<td>26.07</td>
</tr>
<tr>
<td>D. Neck and finger blast*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 1%</td>
<td>28</td>
<td>1.45</td>
</tr>
<tr>
<td>1 = 5%</td>
<td>268</td>
<td>13.81</td>
</tr>
</tbody>
</table>

*Accessions showing less than 5 per cent infection of neck and finger blast only have been considered.
TABLE 5
Identified sources of resistance to all three forms of blast

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Leaf blast score</th>
<th>Neck blast (%)</th>
<th>Finger blast (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 281</td>
<td>4</td>
<td>0.00</td>
<td>0.43</td>
</tr>
<tr>
<td>GE 568</td>
<td>2</td>
<td>0.00</td>
<td>0.44</td>
</tr>
<tr>
<td>GE 669</td>
<td>4</td>
<td>0.00</td>
<td>0.41</td>
</tr>
<tr>
<td>GE 705</td>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GE 1044</td>
<td>4</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>GE 1293</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GE 1409</td>
<td>4</td>
<td>0.00</td>
<td>0.43</td>
</tr>
<tr>
<td>GE 1546</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GE 1855</td>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TABLE 6
Test weight grain density and CO₂ fixation in ears of selected long glume accessions in comparison with normal glume ears

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Test weight (mg/100 seeds)</th>
<th>Grain number per cm length of the finger</th>
<th>CO₂ activity fixed (Cpm/g)</th>
<th>Cpm/organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Long glumed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 2970</td>
<td>400</td>
<td>68</td>
<td>16276</td>
<td>27069</td>
</tr>
<tr>
<td>GE 3302</td>
<td>445</td>
<td>70</td>
<td>18614</td>
<td>39596</td>
</tr>
<tr>
<td>GE 2973</td>
<td>442</td>
<td>71</td>
<td>15098</td>
<td>52958</td>
</tr>
<tr>
<td>2. Normal glumed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PES 176</td>
<td>377</td>
<td>70</td>
<td>11131</td>
<td>19394</td>
</tr>
<tr>
<td>Indaf 5</td>
<td>386</td>
<td>69</td>
<td>7638</td>
<td>8519</td>
</tr>
</tbody>
</table>

good breeding material. The variability available in foxtail millet for panicle shape, size, arrangement of spikelets, tillering, seed size and colour are very diverse offering great scope for exploitation (Harinarayana and Seetharam, 1981). The variability available for protein content in foxtail millet ranges from 7.16 to 15.73 per cent (Table 8). Similarly seed oil content ranges from 4.0 to 7.1 per cent (Table 9). Thus, identified sources with high protein and high seed oil are available for both direct exploitation and use in breeding (Seetharam et al., 1983).

A cross-section of indigenous little millet germplasm numbering 225 representing different states of India was evaluated, qualitatively and quantitatively grouped (Reddy et al., 1984 and Aradhya et al., 1983).

The preliminary evaluation of other small millets, namely kodo millet, proso millet and barnyard millet is still to be initiated.
TABLE 7
Preliminary evaluation and quantitative grouping of 1,366 accessions of foxtail millet

<table>
<thead>
<tr>
<th>Character</th>
<th>Group</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant pigmentation (1366)</td>
<td>green</td>
<td>1228</td>
</tr>
<tr>
<td></td>
<td>pigmented</td>
<td>138</td>
</tr>
<tr>
<td>Plant height (1366)</td>
<td>tall</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>short</td>
<td>51</td>
</tr>
<tr>
<td>Tillering ability (1366)</td>
<td>heavy</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>891</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>379</td>
</tr>
<tr>
<td>Leaf size (1366)</td>
<td>broad</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>981</td>
</tr>
<tr>
<td></td>
<td>narrow</td>
<td>54</td>
</tr>
<tr>
<td>Bristles (1366)</td>
<td>long</td>
<td>919</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>short</td>
<td>121</td>
</tr>
<tr>
<td>Panicle length (1366)</td>
<td>long</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1290</td>
</tr>
<tr>
<td></td>
<td>short</td>
<td>48</td>
</tr>
<tr>
<td>Ear compactness (1366)</td>
<td>compact</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>semicompact</td>
<td>1315</td>
</tr>
<tr>
<td></td>
<td>loose</td>
<td>25</td>
</tr>
<tr>
<td>Seed colour (1278)</td>
<td>black</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>yellow</td>
<td>1142</td>
</tr>
<tr>
<td></td>
<td>orange</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>buff</td>
<td>8</td>
</tr>
<tr>
<td>Seed size (1278)</td>
<td>bold</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1079</td>
</tr>
<tr>
<td></td>
<td>small</td>
<td>83</td>
</tr>
</tbody>
</table>

DIVERSITY IN DIFFERENT SMALL MILLETS

The germplasm is grown once in every three years for rejuvenation and seed increase. This gives an opportunity to compare the relative diversity existing within and between small millet crops.

Finger millet with a wide range of adaptation for varying temperatures, moistures and soil types exhibited very great diversity. The world collection of about 4,400 accessions includes a wide range of plant types, panicle forms, grain colour, grain quality, disease resistance and maturities. The variability present in African collections is distinctly different from that of the Indian collections supporting both African and Indian origin.

Foxtail millet collections also exhibiting wide variation and extensive diversity are available in 1,900 specimens maintained for ear shape, size, bristling, tillering, pigmentation, grain size, grain colour and maturity duration.
TABLE 8
Range of variation for percent protein and its distribution in 1,309 accessions of foxtail millet

<table>
<thead>
<tr>
<th>Origin</th>
<th>No. of accessions</th>
<th>Range</th>
<th>Mean</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>28</td>
<td>7.60-13.58</td>
<td>9.98</td>
<td>16</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>83</td>
<td>8.51-14.06</td>
<td>11.23</td>
<td>14</td>
</tr>
<tr>
<td>Karnataka</td>
<td>81</td>
<td>7.97-14.22</td>
<td>11.75</td>
<td>12</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>28</td>
<td>9.50-13.63</td>
<td>11.71</td>
<td>8</td>
</tr>
<tr>
<td>Gujarat</td>
<td>11</td>
<td>7.27-12.77</td>
<td>10.01</td>
<td>17</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>30</td>
<td>7.16-14.98</td>
<td>10.55</td>
<td>21</td>
</tr>
<tr>
<td>Bihar</td>
<td>67</td>
<td>9.27-13.31</td>
<td>11.32</td>
<td>8</td>
</tr>
<tr>
<td>West Bengal</td>
<td>26</td>
<td>7.22-12.82</td>
<td>9.77</td>
<td>11</td>
</tr>
<tr>
<td>Punjab</td>
<td>9</td>
<td>11.21-14.99</td>
<td>12.50</td>
<td>12</td>
</tr>
<tr>
<td>Uttar Pradesh (hills)</td>
<td>356</td>
<td>7.24-14.45</td>
<td>11.34</td>
<td>18</td>
</tr>
<tr>
<td>Uttar Pradesh (plains)</td>
<td>406</td>
<td>7.47-14.45</td>
<td>10.79</td>
<td>16</td>
</tr>
<tr>
<td>Northern hills</td>
<td>37</td>
<td>8.35-12.93</td>
<td>9.84</td>
<td>12</td>
</tr>
<tr>
<td>Others</td>
<td>57</td>
<td>7.27-15.73</td>
<td>10.66</td>
<td>16</td>
</tr>
<tr>
<td>EXOTIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>38</td>
<td>7.70-12.82</td>
<td>10.42</td>
<td>14</td>
</tr>
<tr>
<td>Others</td>
<td>14</td>
<td>8.24-11.85</td>
<td>10.28</td>
<td>11</td>
</tr>
<tr>
<td>Unknown</td>
<td>38</td>
<td>7.75-14.03</td>
<td>11.47</td>
<td>17</td>
</tr>
</tbody>
</table>

TABLE 9
Range of variation for percent oil in seeds and its distribution in 1,309 accessions of foxtail millet

<table>
<thead>
<tr>
<th>Origin</th>
<th>No. of accessions</th>
<th>Range</th>
<th>Mean</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>28</td>
<td>5.4-7.0</td>
<td>6.33</td>
<td>0.06</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>83</td>
<td>4.4-5.7</td>
<td>4.93</td>
<td>0.06</td>
</tr>
<tr>
<td>Karnataka</td>
<td>81</td>
<td>4.7-6.4</td>
<td>5.64</td>
<td>0.06</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>28</td>
<td>4.0-5.7</td>
<td>4.66</td>
<td>0.12</td>
</tr>
<tr>
<td>Gujarat</td>
<td>11</td>
<td>5.4-6.1</td>
<td>5.62</td>
<td>0.04</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>30</td>
<td>4.8-5.8</td>
<td>5.24</td>
<td>0.05</td>
</tr>
<tr>
<td>Bihar</td>
<td>67</td>
<td>4.6-6.5</td>
<td>5.46</td>
<td>0.09</td>
</tr>
<tr>
<td>West Bengal</td>
<td>26</td>
<td>5.4-6.8</td>
<td>6.16</td>
<td>0.06</td>
</tr>
<tr>
<td>Punjab</td>
<td>9</td>
<td>4.9-5.8</td>
<td>5.48</td>
<td>0.06</td>
</tr>
<tr>
<td>Uttar Pradesh (hills)</td>
<td>356</td>
<td>4.3-7.3</td>
<td>5.59</td>
<td>0.10</td>
</tr>
<tr>
<td>Uttar Pradesh (plains)</td>
<td>406</td>
<td>4.1-6.9</td>
<td>5.40</td>
<td>0.08</td>
</tr>
<tr>
<td>Northern hills</td>
<td>37</td>
<td>5.0-6.2</td>
<td>5.54</td>
<td>0.04</td>
</tr>
<tr>
<td>Others</td>
<td>57</td>
<td>4.4-6.7</td>
<td>5.41</td>
<td>0.08</td>
</tr>
<tr>
<td>EXOTIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>38</td>
<td>4.7-6.3</td>
<td>5.54</td>
<td>0.07</td>
</tr>
<tr>
<td>Others</td>
<td>14</td>
<td>4.9-5.9</td>
<td>5.34</td>
<td>0.06</td>
</tr>
<tr>
<td>Unknown</td>
<td>38</td>
<td>4.4-7.1</td>
<td>5.40</td>
<td>0.11</td>
</tr>
<tr>
<td>Overall</td>
<td>1309</td>
<td>4.0-7.3</td>
<td>5.45</td>
<td>0.10</td>
</tr>
</tbody>
</table>
TABLE 10

Preliminary evaluation, qualitative and quantitative grouping of cross-section of 225 accessions of little millet

<table>
<thead>
<tr>
<th>Characters</th>
<th>Group</th>
<th>Range</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Quantitative characters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early vigour based on seedling dry weight (g)</td>
<td>low</td>
<td>0.10-0.25</td>
<td>205</td>
</tr>
<tr>
<td>Dry matter on 40th day (g)</td>
<td>high</td>
<td>0.26-0.50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>0.50-1.50</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1.51-2.50</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>2.51-3.50</td>
<td>30</td>
</tr>
<tr>
<td>productive tillers (no)</td>
<td>low</td>
<td>5.0-15.0</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>15.1-25.0</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>25.0-above</td>
<td>6</td>
</tr>
<tr>
<td>Days to flower</td>
<td>early</td>
<td>30-50</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>51-70</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>71-90</td>
<td>1</td>
</tr>
<tr>
<td>Days to maturity</td>
<td>early</td>
<td>60-70</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>71-80</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>81-above</td>
<td>15</td>
</tr>
<tr>
<td>Plant height (cm)</td>
<td>very dwarf</td>
<td>40.0-55.0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>dwarf</td>
<td>55.1-70.0</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>70.1-85.0</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>tall</td>
<td>85.1-100.0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>very tall</td>
<td>100.1-above</td>
<td>9</td>
</tr>
<tr>
<td>Flag leaf length (cm)</td>
<td>short</td>
<td>5.0-15.0</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>15.1-25.0</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>25.1-above</td>
<td>12</td>
</tr>
<tr>
<td>Flag leaf breadth (cm)</td>
<td>narrow</td>
<td>0.10-0.50</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>0.51-1.00</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>broad</td>
<td>1.01-1.50</td>
<td>17</td>
</tr>
<tr>
<td>Peduncle length (cm)</td>
<td>short</td>
<td>1.00-10.0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>20.1-30.0</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>30.1-40.0</td>
<td>22</td>
</tr>
<tr>
<td>Main panicle weight (g)</td>
<td>low</td>
<td>0.10-1.50</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1.51-3.0</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>3.01-4.5</td>
<td>8</td>
</tr>
<tr>
<td>Volume weight (g)</td>
<td>low</td>
<td>13.0-13.85</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>13.76-14.50</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>14.51-above</td>
<td>57</td>
</tr>
<tr>
<td>No. of primary branches/panicle</td>
<td>low</td>
<td>1.0-10.0</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>10.1-20.0</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>20.1 above</td>
<td>2</td>
</tr>
<tr>
<td>No. of secondary branches/primary branch</td>
<td>low</td>
<td>1.0-5.0</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>5.0-10.0</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>10.1-15.0</td>
<td>14</td>
</tr>
<tr>
<td>No. of seeds/secondary branch</td>
<td>very low</td>
<td>1.0-20.0</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>10.1-20.0</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>20.1-30.0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>30.1-40.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>very high</td>
<td>40.1-50.0</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 10 (Contd.)

<table>
<thead>
<tr>
<th>Characters</th>
<th>Group</th>
<th>Range</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed weight/panicle (g)</td>
<td>low</td>
<td>0.10-1.50</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1.51-3.0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>3.01-above</td>
<td>1</td>
</tr>
<tr>
<td>Seed yield/plant (g)</td>
<td>low</td>
<td>1.0-5.0</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>5.1-10.0</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>10.1-above</td>
<td>34</td>
</tr>
<tr>
<td>Straw weight/plant (g)</td>
<td>low</td>
<td>1.0-5.0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>5.1-10.0</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>10.1-above</td>
<td>33</td>
</tr>
<tr>
<td>Harvest Index (%)</td>
<td>low</td>
<td>20.0-30.0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>30.1-40.0</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>40.1-50.0</td>
<td>17</td>
</tr>
<tr>
<td>Panicle length (cm)</td>
<td>short</td>
<td>10.0-20.0</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>20.1-30.0</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>30.1-40.0</td>
<td>7</td>
</tr>
</tbody>
</table>

B. Qualitative traits

1. Pigmentation of leaf sheath
 - green
 - purple

2. Pigmentation of glume
 - green
 - purple

3. Pigmentation of stigma
 - purple
 - white

4. Seed colour
 - black
 - light black
 - grey green
 - grey brown
 - yellow
 - grey yellow
 - brown

5. Plant habit
 - erect
 - semi spreading
 - spreading

6. Seed size
 - small
 - medium
 - bold

The genetic diversity available in Kodo millet and barnyard millet is moderate whereas in Panicum accessions both little millet and proso millet—the diversity is relatively less.

UTILIZATION

The utilization of germplasm in small millets as in most crops, is most important. In the case of small millets, the utilization has been drastically restricted by difficulties in artificial hybridization. Except for ragi and to some extent fox-
Small Millets
tail millet, hybridization and recombination breeding in small millets has not
been attempted in India. Improvement in these crops so far has been through
single plant selection, evaluation and release of promising germplasm. During
the last five years a number of selected germplasm, have been tested under
the All India Coordinated Small Millets Improvement Programme. Large-scale
hybridization in ragi involving blast resistant lines has been undertaken in the
last five years, and a number of stabilized selections are undergoing large scale
yield tests in different states (Gowda et al., 1986).

Nevertheless, there is still vast scope to utilize the diversity present in these
crops through a well planned hybridization programme.

PROPOSED ACTIVITIES
The germplasm unit wishes to strengthen its links with other national and in-
ternational bodies that are associated with genetic resources to further enrich
the collections. There are areas both within and outside the country where
large diversity exists and representations from such areas will broaden the ex-
isting variability. Some of the priority areas for future explorations within the
country are Himachal Pradesh, western Ghats of Maharashtra and Gujarat,
northeastern Hill Regions of Assam, Arunachal Pradesh, Meghalaya, Nagaland,
Manipur, Tripura, Sikkim and Mizoram besides northern Bihar and western
Uttar Pradesh where rich diversity exists for finger millet, foxtail millet, proso
millet and barnyard millet. Eastern Madhya Pradesh and Orissa have valuable
germplasm of kodo millet and little millet.

African countries—Kenya, Uganda, Tanzania, Malawi, Zimbabwe, Zam-
bia and Zaire, could be potential areas for variability in finger millet. For foxtail
millet, China being the centre of origin of this crop could be a potential source.
For proso millet USSR accessions may provide the largest diversity.

SUMMARY
The efforts made during the last six years to collect and conserve the small
millets genetic resources have resulted in the pooling of more than 9,000 ac-
cessions of various small millets. The finger millet and foxtail millet accessions
assembled are quite diverse and sizeable. But the diversity collected in other
small millets is narrow and not very comprehensive. There are areas both within
and outside the country where large diversity might be existing and this needs
to be explored before it is lost permanently.

Multilocation evaluation and documentation are equally or more impor-
tant than conservation, as future utilization of germplasm is depended upon
identified sources of useful genes. One of the reasons for lower productivity
of small millets has been the lack of directed human selection. So, improve-
ment in yield is the immediate need and easy access to diverse germplasm
will be the first step in aiming at a quantum jump in yield.
LITERATURE CITED

BREEDING AND VARIETAL IMPROVEMENT OF SMALL MILLETS IN INDIA

G. Harinarayana

INTRODUCTION

Small millets are self-fertilized crops. The degree of selfing varies from near cleistogamy in kodo millet to marginal vicinism in other small millets. The system, however, permits survival of species under natural selection as well as high degree of controlled pollination under directed selection for economic gains. Whatever may be the breeding methodology adopted, it is necessary to ensure a high degree of homozygosity in the end product for realizing maximum production potential. The following paper outlines the objectives, the breeding methodology adopted, varietal gains and the future outlook for small millets improvement in India.

OBJECTIVES

The ultimate goal of breeding small millets remains improvement of grain yield including maximization of biomass and the harvest index.

Most of the small millets particularly little, proso and foxtail millets mature early, and therefore, provide one first harvest for human consumption. Genotypes need to be tailored for maturity-early, mid-late and late, depending on the location specific requirements of soil, rainfall, temperature, humidity, day length and cropping patterns.

Small millets are companions of rainfed farming. Their capability to produce a grain where there is none and storability had earned them an affable adjective of ‘famine grains’. Water-use efficiency of these crops deserves breeding efforts.

Being low- or no-input crops, selection needs to be effected for fertilizer use efficiency, particularly nitrogen, both native and applied. Breeding of dwarf varieties is an objective of intensive cultivation.
Small millets have a different spectrum of diseases and pests. Finger millet is more vulnerable to diseases like blast and viruses. Rust frequently occurs in foxtail millet. Smuts are common in barnyard millet. Kodo, little and proso millets are highly vulnerable to shootfly. Borers occur in finger and barnyard millets. Inbuilt resistance to pests and diseases is of vital significance for continued cultivation of small millets.

Being the food of the poorest of the poor segment of the society, quality breeding deserves attention. The evolution of high protein white finger millets Hamsa (Mallanna and Rajashekar, 1969) and CO 9 (Hrishi and Ayyamperumal, 1970) deserves mention. Small millets are a rich source of minerals. Processing and food technology also demand varieties with tailor-made characteristics.

Post-harvest technology demands free threshing grain for minimizing human drudgery.

BREEDING METHODS

Intravarietal improvement

Mass selection

Mass selection has been extensively practised in India for the purification of the cultivars (land races) and multiplication of the varieties bred by pure line or pedigree systems. Mass selection has, however, resulted in marginal gain in improving the performance of farmers' finger millet varieties like Gidda Ragi and Hullubele of Karnataka, Saluchodi of Andhra Pradesh, Udumalpet Ragi and Guddapah Rajampet Ragi of Tamil Nadu, and Murky and Nangkatna of Sikkim. V 27 and V 306 proso millets adapted to Andhra Pradesh and Koraput Local little millet adapted to Orissa also fall in this category.

Pure line selection

Pure line selection remained the prime breeding method for improving performance, particularly grain yield of small millets. Single plants were selected from land races (germplasm) and 'improved' varieties of farmers', and the progeny was tested. Superior progenies, mostly for earliness, pest and disease resistance, and grain yield were evaluated in multilocated trials, and released as varieties. Pure line selection gained momentum because of the ease with which selection can be practised, because of the variability in the base population, and because of the difficulties in emasculation and hybridization of small millets. The continued success of pure line selection, however, depends on the rate and accumulation of mutations, and the slow release of hidden genetic variability through natural cross pollination, recombination and segregation (Navale *et al.*, 1984) regulated by cytological homoeostasis (Harinarayana and Murty, 1971).
Pure line selection has resulted in the development and release of maximum number of finger millet varieties (41) (Table 1), as well as 13 foxtail millet varieties (Central Seed Committee, 1985). Pure line selection has been the main forte of kodo (13), little (10), proso (12) and barnyard (7) millet breeding in developing and releasing 'new' varieties (Table 2).

Intervarietal improvement

Methods of hybridization

Natural hybridization: Small millets, although self-pollinated, permit a certain degree of cross pollination. Very low degree of natural cross pollination was observed in foxtail millet (Patil, 1952) and little millet (Dwivedi, 1947). This has led to the occurrence of natural hybrids in germplasm. Identification of the natural hybrids and increasing their frequency would considerably enhance the variability in small millets:

1) **Contact method:** The panicles of selected plants are enclosed in a parchment bag before flowering to enhance the chances of natural cross pollination (Ayyangar, 1934). This has resulted in a low frequency (1.5 per cent) of true hybrids in foxtail millet (Mahishi et al., 1982).

2) **Use of marker plant types:** The interplanting of characteristic plant types like foxtail millet dwarfs (Harinarayana et al., 1984) or purple pigmented finger millets or other distinctly distinguishable lines in germplasm and breeding nurseries, collection of seeds and grow out tests reveal natural hybrids.

3) **Protogyny:** Kodo millet is a cleistogamous plant. However, protogyny has been observed in some cultures like IPS 147, IPS 197, IPS 427 etc. Interplanting of protogynous kodo millets in germplasm or in breeding nurseries, or in association with chosen lines enhances the prospects of natural hybrids. Controlled pollination could also be effected in protogynous millets. Similar mechanisms that promote cross pollination like protogyny or protandry should be identified in small millets.

4) **Polycrosses:** Planting of selected parents of small millets in greenhouse and forcing pollination through insects at the time of flowering could produce polycross progeny.

5) **Induction and utilization of sterility:** Physical mutagens in low levels induce sterility. Recurrent irradiation and interplanting of selected millets in germplasm and breeding nurseries exposes them to open pollination. Grow out tests would reveal natural hybrids.

6) **Controlled hybridization:** Controlled hybridization aims at sterilization or removal of anthers and controlled pollination to recover hybrids. Besides hand emasculation, hot water was used in emasculating finger millet (Rao and Rao, 1962; Raj et al., 1984) and little millet (Srivastava and Yadav, 1972). Gametocides have also been used to induce male sterility and produce F₁
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td><20</td>
<td>—</td>
<td>—</td>
<td>AKP 4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>—</td>
<td>Aruna</td>
<td>AKP 1</td>
<td>AKP 2</td>
<td>Nirmal</td>
</tr>
<tr>
<td></td>
<td>>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>CO 10</td>
<td>Birsa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sarada</td>
<td>Mandua 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO 11</td>
<td></td>
</tr>
<tr>
<td>Mid-late</td>
<td><20</td>
<td>—</td>
<td>VZM 1</td>
<td>AKP 3</td>
<td>VL Mandua 204</td>
<td>PES 176</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>—</td>
<td>VZM 2</td>
<td>AKP 6</td>
<td>IE 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>25</td>
<td>—</td>
<td>CO 7</td>
<td>—</td>
<td>—</td>
<td>Simhadri</td>
</tr>
<tr>
<td>Late</td>
<td><20</td>
<td>RO 870, K 1,</td>
<td>K 2</td>
<td>—</td>
<td>VL Mandua 101</td>
<td>Paiyur 1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>H 22, ES 11,</td>
<td>—</td>
<td>—</td>
<td>Kalyani,</td>
<td>BR 407, PES 110</td>
</tr>
<tr>
<td></td>
<td>>25</td>
<td>CO 2</td>
<td>—</td>
<td>—</td>
<td>Gujarat Nagli</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1, CO 4</td>
<td>CO 5</td>
<td>Hamsa</td>
<td>Godavari</td>
<td>Nilachal, Ratnagiri,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO 12</td>
</tr>
</tbody>
</table>
TABLE 2
Small millets developed through pure line selection in India

Grain Yield (q/ha)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodo</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>100-120</td>
<td>—</td>
<td>Niwas 1</td>
<td>CO 3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>120-150</td>
<td>PLR 1, CO 1</td>
<td>CO 2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Foxtail</td>
<td><80</td>
<td>—</td>
<td>CO 4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>SIC 3</td>
<td>—</td>
<td>K 2</td>
<td>SIA 326</td>
</tr>
<tr>
<td>80-100</td>
<td>CO 3, Arjuna</td>
<td>—</td>
<td>Chitra</td>
<td>CO 2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>CO 1 H 1, H 2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>K 221-1</td>
<td>—</td>
</tr>
<tr>
<td>Little</td>
<td><80</td>
<td>—</td>
<td>V15, V17</td>
<td>Dindori 2,</td>
<td>—</td>
<td>Dindori 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>80-100</td>
<td>CO 1</td>
<td>Koraput Local, CO 2, K 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Gujarat Vari 1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Proso</td>
<td><70</td>
<td>Ramcheena,</td>
<td>K 2</td>
<td>K 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>Shyamcheena,</td>
<td>CO 1, V 27,</td>
<td>CO 2, CO 3,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 306</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-90</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Varada</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnyard</td>
<td><80</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Anurag</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-90</td>
<td></td>
<td>K 1</td>
<td>RAU 3</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-100</td>
<td></td>
<td>-</td>
<td>-</td>
<td>V 1 Madira</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>K 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VL 8 CO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
hybrids in small millets, particularly finger millet (Reddy et al., 1983). The discovery of male sterility like in foxtail millet (Hu, 1985) is likely to hasten heterosis breeding for commercial exploitation.

The small and delicate spikelets combined with brittleness of the rachis appear to be bottlenecks in hand emasculation. Hot water method requires maintenance of correct temperature and is labour intensive. The contact method depends on the synchronization of female and male florets. The use of gametocides resulted in high degree of infertility. All these methods did not prove a sure success, and moreover resulted in extremely low percentage of hybrids. Considerable need, therefore, exists in developing and standardizing hybridization techniques as in proso millet (Nelson, 1984).

Recombination breeding

Progress through hybridization has been extremely limited, in India in developing small millets except finger millet. This has been chiefly due to difficulties in emasculation and pollination, in identification of true hybrids, limited heterosis in intervarietal crosses (Srivastava and Yadav, 1977), and the availability of unexploited genetic resources.

Pedigree selection: Finger millet occupies pride of place among small millets. The improvement of finger millet has, therefore, received greater attention than other small millets. Until the 1950's, finger millet breeding revolved around improvement of locally adapted material through state located centres. The Project for Implementation of Regional Research on Cotton, Oilseeds and Millets' (PIRRCOM) were established during the late 1950's with some cooperation among state research centres. The institution of All India Coordinated Millets Improvement Project during 1965 provided the necessary fillip for the improvement of millets in India.

Indigenous germplasm of small millets including finger millet was assembled during 1960's. Exotic germplasm, particularly African finger millet germplasm was introduced into India during 1970's. The African germplasm was superior to Indian germplasm in rainy (kharif) and post-rainy (rabi) seasons, while the performance was comparable during summer (Swaminath, 1979). The African genotypes have also many desirable characters like high initial vigour, large ears, high grain density and thick robust stems with broad dark green leaves (Seetharam, 1982).

Following hybridization among indigenous, exotic and between indigenous and exotic collections, pedigree selection was adopted. Early (less than 100 days), mid-late (100-110 days) and late (more than 110 days) selections were made in Indian × Indian, Indian × exotic or exotic × Indian, and exotic × exotic crosses (Table 3). The best exotic × exotic derivatives (HR 374; CO 6) had the productivity of less than 2000 kg/ha. The best Indian × exotic or vice versa derivatives (Indaf 9; CO 9 and Indaf 5; Indaf 1, Indaf 3, K 5, Indaf 7, Indaf 8, Indaf 6, HR 911 and Indaf 11) had the highest productivity
TABLE 3
Hybrid derivatives of finger millet in India

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I x I Early</td>
<td>Udaya</td>
<td>—</td>
<td>—</td>
<td>K 7</td>
<td>5-6</td>
</tr>
<tr>
<td>Mid-late</td>
<td>Purna</td>
<td>—</td>
<td>Annapurna</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Late</td>
<td>—</td>
<td>Cauvery</td>
<td>—</td>
<td>Shakti, HPV 7-6</td>
<td>—</td>
</tr>
<tr>
<td>E x I Early</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indaf 9</td>
<td>—</td>
</tr>
<tr>
<td>Mid-late</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Indaf 1, Indaf 5</td>
<td>—</td>
</tr>
<tr>
<td>Late</td>
<td>—</td>
<td>—</td>
<td>Indaf 3, Indaf 6, Indaf 7, Indaf 8, K 5, HR 911</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>E x E Early</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>HR 374</td>
<td>—</td>
</tr>
<tr>
<td>Late</td>
<td>CO 6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

I x I: Indian x Indian Early: Less than 100 days
E x I: Exotic x Indian Mid-late: 100-110 days
E x E: Exotic x Exotic Late: More than 110 days

of more than 2500 kg/ha. The Indian x Indian derivatives (Udaya, K 7 and 5-6; Purna and Annapurna; Cauvery, Shakti and HPB 7-6) had intermediate productivity.

The Indo-African crosses have provided the real backbone for breaking the grain yield barriers in the improvement of finger millet. They helped in increasing finger millet productivity by more than 50 per cent in Karnataka State (Seetharam, 1982) and by 60 per cent in Tamil Nadu (Nagarajan and Raveendran, 1983).

Compared to finger millet, hybridization efforts were negligible in other small millets. Recognizing the significance of small millets in the hilly and tribal areas, Indian Council of Agricultural Research established five centres of excellence for the improvement of small millets with the assistance of International Development Research Centre, Canada. Since 1978, these centres at Dindori for kodo millet, Nandyal for foxtail millet, Semiliguda for little millet, Dholi for proso millet and Almora for barnyard millet are devotedly working towards the improvement of small millets. Besides assembling large germplasm collections, varietal improvement through pure line selection and hybridization is receiving priority. Their efforts have already resulted in the release of kodo millets (PSC 1 and PSC 10), foxtail millets (SIA 326 and SIC 3), little millet (PRC 3), proso millet (BR 7) and barnyard millet (RAU 3) varieties
through pure line selection. The hybrid derivatives are in advanced stages of testing. One hybrid derivative of foxtail millet, CO 5 (Co 1 × A 113/2) was released in Tamil Nadu (Raveendran et al., 1979).

Mutation breeding

Mutation breeding appears effective and potential in highly self-fertilized small millets to rectify a character, to improve a character, to generate polygenic variation and to induce partial to complete sterility for increasing recombination frequency. Physical, chemical and combination mutagens have been used in small millets.

Rectification of characters

Dwarf, early and bold seeded mutants of small millets are frequently sought after to increase response to nutrient application to fit into cropping systems and to improve the yield of flour. Stabilized dwarf mutants of the finger millet varieties *Annapurna* and *Cauvery* have a better harvest index than the original varieties and outyielded them (Shivshankar and Ranganatha, 1983). Following gamma radiation, early mutants of finger millet, *Hamsa*, with increased finger number and grain-bearing area were obtained (Nayar et al., 1979).

Mutation breeding also led to release of earlier maturing finger millets, *Dibya Sinha* (90 days) originated from *Sarada* (110 days) in Orissa, and CO 3 (110 days) originated from CO 1 (120 days in Tamil Nadu (Table 4). The gamma irradiated mutants 8-2-A-a and 57-A-3 outyielded the standard check B 11 in 1976-82 trials in Maharashtra (Dhonukshe et al., 1983).

Inducing polygenic variation

Raveendran et al. (1982) observed increased genetic variance for seven metric traits in M_2 and M_3 generations of finger millet genotypes MS 2698 and *Sarada* following chemical mutagenesis. In addition MS 2698 yielded bold seeded mutants. Gamma irradiation was shown to increase the genetic variance for tiller number, plant height, head length and grain yield in foxtail millet (Rao and Goud, 1973) and in barnyard millet (Mehra et al., 1985).

TABLE 4

<table>
<thead>
<tr>
<th>Mutant selections of finger millet in India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Early</td>
</tr>
<tr>
<td>Late</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Early: Less than 100 days
Late: More than 110 days
Inducing sterility

Fertility (grain set) was reduced by gamma irradiation from 80.2 per cent at 10 kR to 20.5 per cent at 30 kR, whereas EMS had no significant effect on fertility (Sreekantaradhya, 1979).

FUTURE OUTLOOK

Small millets are traditionally, the indispensable components of the dryland farming system. They are ideally adapted to diverse agroclimatic conditions of soil, water, temperature and humidity. They provide the first harvest in the arid and semi-arid tropics. They are adapted to irrigated farming also. Nutritionally superior to wheat and rice, they provide cheap proteins, minerals and essential vitamins to the poorest of the poor.

The area and production of small millets with the exception of finger millet, are coming down. The area under finger millet is constant and fluctuated between 2.25 m ha in 1950-54 and 2.61 m ha in 1975-80. The production and productivity showed continuous increase. The production increased from 1.52 m tonnes in 1950-54 to 2.62 m tonnes in 1980-85, and increase of 72.4 per cent. The productivity crossed the one tonne mark in 1975-80 and is racing towards the one-and-a-half tonne mark, a record for millet crops including sorghum and pearl millet.

The other small millets are showing a reverse trend to finger millet. The area and production are decreasing. The area came down by 39 per cent in 1980-85 (3.65 m ha) over 1950-55 (5.1 m ha). Similarly, the production decreased by 38.7 per cent from 2.09 m tonnes in 1950-55 to 1.49 m tonnes in 1980-85. The productivity showed marginal fluctuations around 400 kg/ha. The reasons are many: The low productivity, poor resources base, lack of input, price and procurement support coupled with no alternate food uses, campaigns for value-added oilseeds and pulses and “urbanization” of food habits are slowly displacing the small millets to more and more marginal, fertilizer-hungry and water-starved abandoned soils.

Millets are, however, a way of life. Millets are grown for food and fodder. They have immense untapped genetic and developmental potential. Some millets have not experienced the sleight of human selection. Finger, kodo and barnyard millets have the capacity to produce more than 2000 kg/ha even under rainfed conditions. They could, therefore, be a stabilizing force in the building up of national foodgrain buffer stocks. Practically devoid of stored grain pests, small millets have a long storage life and keeping quality. Vast potentials do exist for substituting super cereals in industrial and food products. The growing demand for food and a variety of food products also calls for interest and investment in small millets by parliamentarians, plant scientists, people and peasants. Small millets, therefore, hold the key to the future of mankind. They are the potential Food Crops of Tomorrows’ World.
LITERATURE CITED

IMPORTANCE, GENETIC RESOURCES AND BREEDING OF SMALL MILLETS IN BANGLADESH

M.A. Majid, M.A. Hamid and Mannujan

INTRODUCTION

Kaon or foxtail millet (Setaria italica Beauv.), Cheena or Proso millet (Panicum miliaceum Linn.), shama kaon or bhura kaon or barnyard millet (Echinochloa colona Link.), ragi or finger millet (Eleusine coracana Gaertn.) and kodo or ditch millet (Paspalum scrobiculatum Linn.) are the small-grained minor cereals cultivated in Bangladesh. Ragi and kodo are grown on a very limited area with minimum care and inputs in the districts of Kushtia and Rajshahi, mainly in poor and marginal soils where no other crops can thrive. Kaon, cheena and shama kaon are cultivated all over Bangladesh relatively in larger areas but with little inputs in poor marginal lands including the river beds. These minor cereals are short in duration, drought tolerant, well adapted and less susceptible to diseases and insect pests. In case of failure or damage of major crops due to drought or other natural calamities, some of these minor cereals are grown as a replacement to minimise the loss or to avoid imminent famine. For this reason, they are called famine or disaster crops.

PRODUCTION TRENDS OF CEREAL CROPS

Farmers in Bangladesh grow indigenous, low yielding land races of millets, and consequently, obtain very poor yields. The total acreage and production of millets and other minor cereals have declined considerably in recent years due to increase in acreage and production of high yielding varieties of rice and wheat (Table 1).
TABLE 1
Production trend of cereal crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>1972-73</th>
<th>1983-84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (lakh ha)</td>
<td>Production (lakh tonnes)</td>
</tr>
<tr>
<td>Rice</td>
<td>96.297</td>
<td>100.889</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.201</td>
<td>0.910</td>
</tr>
<tr>
<td>Millets</td>
<td>0.679</td>
<td>0.486</td>
</tr>
<tr>
<td>Barley</td>
<td>0.259</td>
<td>0.164</td>
</tr>
<tr>
<td>Other cereals</td>
<td>0.039</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>98.475</td>
<td>102.481</td>
</tr>
</tbody>
</table>

Source: Bangladesh Bureau of Statistics.

The low yield of millets (700-860 kg/ha) can be attributed to poor soil, non-availability of improved varieties, lack of application of fertilizer, irrigation water, pesticide and improved cultural practices.

GENETIC RESOURCES AND RESEARCH ACTIVITIES OF MINOR CEREALS

In the past no research thrust was given for the improvement of these neglected crops. The researchers and the planners were not aware of their importance and role in the cropping pattern and farmers' economy of Bangladesh. In 1981, Bangladesh Agricultural Research Institute initiated a research programme for varietal improvement of two important minor cereals—proso and foxtail millet—and subsequently to develop production technologies for different agro-ecological zones of Bangladesh with the financial assistance of International Development Research Centre (IDRC), Canada. As a first step germplasm was assembled both from home and abroad and so far 222 foxtail millet and 109 proso millet lines were received from ICRISAT and ICAR, India. In addition, 424 foxtail and 163 proso millet lines were collected locally. All these local and exotic lines were grown in the Central Research Station of BARI at Joydebpur for their proper identification, purification and documentation.

A total of 646 lines both exotic and local foxtail millet were tested at two different agroclimatic situations (Joydebpur and Thakurgaon) to evaluate their yield potential, adaptability and other desirable agronomic characters. The variability observed for the plant characters at Thakurgaon Research Station is summarized in Table 2.

The coefficient of variance for grain yield was highest, indicating possible scope for further selection and improvement. Superior lines having high yield potential and other desirable characters were identified and put into a series
of field trials at eight different agro-climatic regions—Joydebpur, Ishurdi, Jamalpur, Jessore, Chandina, Thakurgaon, Debiganj and Rangpur (Table 3).

Considering yield and other desirable characters, the local foxtail millet line Bogra-1 performed the best, followed by Lakhmipur-2, Parameshpur and Shibnagar. These four lines are undergoing multilocation trial in a farmer’s field. Further, it is proposed to release them through the National Seed Board for commercial cultivation.

Similarly, 272 germplasm of both exotic and local proso millet were grown along with a standard check at two different agroclimatic zones viz., Joydebpur and Jamalpur. The range of variability observed for important agronomic attributes at Joydebpur is presented in Table 4.

The coefficient of variation was again highest for grain yield, indicating possible scope for further selection for yield. Superior lines having high yield potential and other desirable characters were selected and put into a series of yield trials for selection of promising lines (Table 5).

When average yield performance at all the four locations was considered, three locals—Kumardhon (1.339 t/ha), Bagaikandi (1.288 t/ha), Telipara (1.239 t/ha), and one exotic line called white millet (1.209 t/ha) were found high yielding. These four lines are before the National Seed Board for release for commercial cultivation. The white millet variety has already been released and the other three lines are in the process of release.

In the yield trial of 1985-86, some promising lines of proso millet have been identified (Table 6). These lines are BPm-40, BPm-14, BPm-34 and BPm-21.
<table>
<thead>
<tr>
<th>Entries</th>
<th>Joydebpur</th>
<th>Ishurdi</th>
<th>Jamalpur</th>
<th>Jessore</th>
<th>Chandina</th>
<th>Thakurgaon</th>
<th>Debigan</th>
<th>Rangpur</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bogra-1</td>
<td>2.005</td>
<td>1.808</td>
<td>2.675</td>
<td>3.250</td>
<td>1.467</td>
<td>1.992</td>
<td>2.898</td>
<td>2.433</td>
<td>2.316</td>
</tr>
<tr>
<td>BSi-273</td>
<td>1.328</td>
<td>1.203</td>
<td>1.715</td>
<td>2.667</td>
<td>1.533</td>
<td>1.292</td>
<td>2.546</td>
<td>1.883</td>
<td>1.772</td>
</tr>
<tr>
<td>Lakhmpur-2</td>
<td>1.725</td>
<td>1.379</td>
<td>2.302</td>
<td>3.260</td>
<td>2.100</td>
<td>2.142</td>
<td>2.452</td>
<td>2.317</td>
<td>2.208</td>
</tr>
<tr>
<td>Parameshtpur</td>
<td>1.765</td>
<td>1.600</td>
<td>2.404</td>
<td>2.917</td>
<td>1.800</td>
<td>2.275</td>
<td>2.084</td>
<td>2.583</td>
<td>2.179</td>
</tr>
<tr>
<td>Arjuna</td>
<td>1.698</td>
<td>1.783</td>
<td>1.898</td>
<td>3.415</td>
<td>1.867</td>
<td>1.758</td>
<td>2.003</td>
<td>1.917</td>
<td>2.042</td>
</tr>
<tr>
<td>Shibnagar</td>
<td>1.665</td>
<td>1.250</td>
<td>1.884</td>
<td>3.167</td>
<td>2.033</td>
<td>2.225</td>
<td>2.531</td>
<td>2.550</td>
<td>2.163</td>
</tr>
<tr>
<td>BSi-274</td>
<td>1.760</td>
<td>1.654</td>
<td>2.009</td>
<td>3.083</td>
<td>1.700</td>
<td>1.433</td>
<td>2.383</td>
<td>1.669</td>
<td>1.967</td>
</tr>
<tr>
<td>Lohachura</td>
<td>1.660</td>
<td>1.545</td>
<td>2.289</td>
<td>2.333</td>
<td>1.967</td>
<td>1.650</td>
<td>2.397</td>
<td>2.167</td>
<td>1.990</td>
</tr>
<tr>
<td>Mogra Kaon</td>
<td>1.917</td>
<td>1.546</td>
<td>2.164</td>
<td>2.000</td>
<td>1.767</td>
<td>2.000</td>
<td>2.775</td>
<td>2.283</td>
<td>2.057</td>
</tr>
<tr>
<td>Check (Local)</td>
<td>1.750</td>
<td>0.813</td>
<td>2.275</td>
<td>3.083</td>
<td>1.317</td>
<td>1.667</td>
<td>2.222</td>
<td>2.783</td>
<td>1.989</td>
</tr>
</tbody>
</table>
TABLE 4
Variability observed for plant characters in proso millet germplasm at Joydebpur in 1983-84

<table>
<thead>
<tr>
<th>Character</th>
<th>Range</th>
<th>S.D.</th>
<th>Mean ± SE</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to 50% flowering</td>
<td>63.00-104.00</td>
<td>8.998</td>
<td>73.568±1.36</td>
<td>12.231</td>
</tr>
<tr>
<td>Days to maturity</td>
<td>86.00-132.00</td>
<td>7.550</td>
<td>119.750±1.14</td>
<td>6.304</td>
</tr>
<tr>
<td>Plant height (cm)</td>
<td>41.50-86.40</td>
<td>9.330</td>
<td>62.52±1.41</td>
<td>14.92</td>
</tr>
<tr>
<td>Panicle length (cm)</td>
<td>10.80-26.2</td>
<td>2.690</td>
<td>19.39±0.41</td>
<td>13.89</td>
</tr>
<tr>
<td>Tiller Nos./plot</td>
<td>2.80-8.20</td>
<td>1.20</td>
<td>4.43±0.18</td>
<td>27.12</td>
</tr>
<tr>
<td>Grain yield/plot (g)</td>
<td>115.00-573.00</td>
<td>105.24</td>
<td>362.95±15.80</td>
<td>28.995</td>
</tr>
</tbody>
</table>

TABLE 5
Mean yield (t/ha) of 10 strains of proso millet at four locations in 1983-84

<table>
<thead>
<tr>
<th>Variety</th>
<th>Hathazzari</th>
<th>Jessore</th>
<th>Ishurdi</th>
<th>Bogra</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagakandi</td>
<td>1.633</td>
<td>1.150</td>
<td>1.360</td>
<td>1.008</td>
<td>1.288</td>
</tr>
<tr>
<td>Islampur</td>
<td>1.598</td>
<td>1.133</td>
<td>1.155</td>
<td>0.708</td>
<td>1.149</td>
</tr>
<tr>
<td>Kumardhun</td>
<td>1.525</td>
<td>1.400</td>
<td>1.388</td>
<td>1.042</td>
<td>1.339</td>
</tr>
<tr>
<td>Lakshimipur</td>
<td>1.308</td>
<td>1.300</td>
<td>1.147</td>
<td>0.692</td>
<td>1.112</td>
</tr>
<tr>
<td>Mejlo-SelREW-5</td>
<td>1.500</td>
<td>1.200</td>
<td>1.217</td>
<td>0.908</td>
<td>1.206</td>
</tr>
<tr>
<td>Telepara</td>
<td>1.400</td>
<td>1.450</td>
<td>1.430</td>
<td>0.675</td>
<td>1.239</td>
</tr>
<tr>
<td>White millet</td>
<td>1.725</td>
<td>1.067</td>
<td>1.367</td>
<td>0.675</td>
<td>1.209</td>
</tr>
<tr>
<td>BPm-51</td>
<td>1.071</td>
<td>1.350</td>
<td>1.430</td>
<td>0.633</td>
<td>1.121</td>
</tr>
<tr>
<td>BPm-52</td>
<td>0.929</td>
<td>1.167</td>
<td>1.305</td>
<td>0.683</td>
<td>1.021</td>
</tr>
<tr>
<td>Local (check)</td>
<td>1.058</td>
<td>1.033</td>
<td>0.667</td>
<td>0.633</td>
<td>0.848</td>
</tr>
</tbody>
</table>

TABLE 6
Results of advanced yield trial of proso millet—1985-86

<table>
<thead>
<tr>
<th>Variety</th>
<th>Joydebpur</th>
<th>Jamaipur</th>
<th>Thakurgaon</th>
<th>Ishurdi</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPm-2</td>
<td>1.721</td>
<td>1.270</td>
<td>2.233</td>
<td>1.867</td>
<td>1.773</td>
</tr>
<tr>
<td>BPm-4</td>
<td>1.878</td>
<td>1.716</td>
<td>1.767</td>
<td>2.317</td>
<td>1.920</td>
</tr>
<tr>
<td>BPm-12</td>
<td>1.394</td>
<td>1.587</td>
<td>1.917</td>
<td>2.333</td>
<td>1.808</td>
</tr>
<tr>
<td>BPm-14</td>
<td>2.105</td>
<td>1.722</td>
<td>2.083</td>
<td>2.410</td>
<td>2.080</td>
</tr>
<tr>
<td>BPm-16</td>
<td>1.919</td>
<td>1.727</td>
<td>2.300</td>
<td>1.833</td>
<td>1.945</td>
</tr>
<tr>
<td>BPm-21</td>
<td>1.538</td>
<td>1.973</td>
<td>2.267</td>
<td>2.200</td>
<td>1.995</td>
</tr>
<tr>
<td>BPm-34</td>
<td>1.517</td>
<td>1.933</td>
<td>2.167</td>
<td>2.383</td>
<td>2.000</td>
</tr>
<tr>
<td>BPm-40</td>
<td>1.908</td>
<td>1.893</td>
<td>1.917</td>
<td>2.404</td>
<td>2.031</td>
</tr>
<tr>
<td>BPm-60</td>
<td>1.649</td>
<td>1.781</td>
<td>1.883</td>
<td>2.200</td>
<td>1.878</td>
</tr>
<tr>
<td>Bagakandi</td>
<td>1.759</td>
<td>1.667</td>
<td>1.500</td>
<td>2.217</td>
<td>1.786</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Annual Report, Millet Improvement Project (1983-84), Bangladesh Agricultural Research Institute, Joydebpur.
Annual Report, Millet Improvement Project (1984-85), Bangladesh Agricultural Research Institute, Joydebpur.
Annual Report, Millet Improvement Project (1985-86), Bangladesh Agricultural Research Institute, Joydebpur.
7

IMPORTANCE, GENETIC RESOURCES AND BREEDING OF SMALL MILLETS IN SRI LANKA

S. Ponnuthurai

Small millets grown in Sri Lanka are: Eleusine coracana (finger millet), Panicum miliaceum (common millet) and Setaria italica (foxtail millet).

AREA AND IMPORTANCE

Area under finger millet ranges from 16,000 to 44,000 ha and the annual production from 7,000 to 18,000 tonnes. Area under common millet ranges from 900 to 2,500 ha and the production from 500 to 1,100 tonnes. Foxtail millet has the lowest acreage among the millets and ranges from 24 to 425 ha and the production from 24 to 195 tonnes (Table 1). Both area and production of millets are much less compared to rice which is the staple of food and the area under millets showed a further decline over the six year period under consideration. Decline in millet production could be attributed to the liberalization of imports of rice, wheat flour, etc. by the Government and increase in rice production, since 1977.

Finger millet is grown traditionally under the shifting forest fallow system (chena), in the dry zone. The extent cultivated per farming family is about half to one hectare. Millets are grown mixed with the other cereals such as maize, sorghum and also vegetables. Yield of finger millet under this system of cultivation varies from 1000-1200 kg/ha with minimal inputs. Under these conditions the farmer gets a net return of about Rs. 4,000 per ha. In recent times a stabilized system of agriculture has come to stay, due to increased irrigation facilities. Although the commissioning of the river diversion projects such as Mahaweli and others has increased settled agriculture, there is still a sizeable portion of unirrigable highland of about one million hectares in the dry zone (Fernando, 1981) where millets and other highland crops could be cultivated.
Year	Finger millet		Common millet		Foxtail millet		Rice	
	Area (ha)	Production (tonnes)	Area (ha)	Production (tonnes)	Area (ha)	Production (tonnes)	Area (ha)	Production (tonnes)
1975	43,836	17,873	2,501	489	425	173	425	173
1976	39,526	17,640	1,072	841	284	195	284	195
1977	34,617	16,360	1,103	1,083	173	134	173	134
1982	16,035	13,300	—	—	—	—	—	—
1983	20,595	11,662	934	934	24	24	24	24
1984	16,489*	6,570	—	—	—	—	—	—

*Area grown in the wet season only

Source: Dept. of Agriculture, Sri Lanka
Important areas of millet production are: Anuradhapura and Hambantota districts in the dry zone (where the average annual rainfall is 1270-1900 mm), Matale, Monaragala and Kurunegala districts in the intermediate zone (rainfall of 1,900-3175 mm), and Ratnapura district in the wet zone (rainfall of over 3,175 mm) (Table 2, and Fig. 1). In all these areas finger millet and foxtail millet are grown in the wet season during the northeast monsoon rains that occur mid September to January (Fig. 2B). In Ratnapura district of the wet zone finger millet is cultivated in the wet season, but is confined to the relatively drier areas in the southeast. In the Jaffna district where cropping intensity is high, millets in general are grown under irrigation during the dry season in the period April to July (Fig. 2A). Traditional varieties and limited area of improved varieties of finger millet are grown by farmers in this district, with yields ranging from 1200 to 2000 kg/ha.

Common millet constitutes the commonest cereal component of the dry season in the dry zone, and is grown under the shifting cultivation system, with the low (about 200 mm) and uncertain rainfall received. The period of cultivation is from March to July. Average yield obtained ranges from 400 to 700 kg/ha.

Maximum temperatures (monthly mean) ranges from 87-90°F in Ratnapura, 84-88°F in Kurunegala, and 81-90°F in Anuradhapura (Fig. 2B). Minimum temperatures are about the same (70-74°F) in all the three locations. In the dry zone location Anuradhapura, common millet is cultivated during the period March to July, and the maximum temperature is higher, ranging from 91 to 93°F, and the minimum from 73 to 77°F.

Soils vary in the different millet growing areas. In the dry zone reddish-brown earths, predominate. In the Jaffna district which is also a part of the dry zone, soil consists of calcic red yellow latosols and sandy regosols. In the

<table>
<thead>
<tr>
<th>District</th>
<th>Finger millet</th>
<th>Common millet</th>
<th>Foxtail millet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anuradhapura</td>
<td>7,600</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Hambantota</td>
<td>1,165</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Ampara</td>
<td>750</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jaffna</td>
<td>390</td>
<td>91</td>
<td>-</td>
</tr>
<tr>
<td>Matale</td>
<td>2,070</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Monaragala</td>
<td>1,965</td>
<td>40</td>
<td>49</td>
</tr>
<tr>
<td>Kurunegala</td>
<td>1,440</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Ratnapura</td>
<td>470</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>Kandy</td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Dept. of Agriculture, Sri Lanka.
Fig. 1. Important areas of millet production in Sri Lanka
intermediate zone, soils belong to reddish-brown earths and immature brown loams, reddish brown latosolic soils and immature brown loams, and red yellow podzolic soils with weakly developed laterites.

GERMPLASM RESOURCES

Several indigenous varieties of millets are being cultivated by farmers. Some local germplasm in millets is maintained in the dry zone research stations viz. Maha Illuppallama, Karadian Aru, Kilinochchi and Angunukolapelessa. There appears a tendency for the decline in the area under millets, which could lead to loss of much valued indigenous genetic resources. Concerted efforts are therefore needed to collect and conserve this germplasm in an appropriate manner for use in crop improvement work in the future. Nationally and internationally due attention should be devoted to this important service.

In addition to the local germplasm, millet introductions were made from time to time from other countries, mainly India. MI 302, a finger millet selection from an introduction is recommended for cultivation by the Department of Agriculture since the mid-seventies. The yield of this variety ranged from 800 to 1,000 kg/ha under rainfed and from 1,000 to 1,500 kg/ha under irrigated conditions. Some introductions made subsequently have been found to be better adapted. One such introduced variety is CO-10 which has outyielded MI 302 and the local varieties. Its yield ranged from 2.0 to 2.5 t/ha.

In common millet local varieties are popular and their yield range from 600 to 700 kg/ha. Evaluation of introductions (MS 2420, MS 1491) is in progress at the research stations. Likewise, in foxtail millet, local varieties are
Fig. 2B. Rainfall and temperature in selected millet growing areas
cultivated by the farmers and their yields range from 450 to 700 kg/ha. Introductions such as KHS-1 and ISC 40, evaluated in the research plots show promise.

BREEDING AND VARIETAL IMPROVEMENT

Breeding and varietal improvement work in millets is confined to varietal evaluation for yield in finger millet. Varieties are evaluated in the National Coordinated Varietal Trial and its main objective is to identify high yielding and widely adapted varieties with superior agronomic and morphological characteristics. These trials began in the 1981 wet season. Most varieties evaluated were introductions, with MI 302 as the check variety. Selected varieties and their mean yields over several locations in the different agro-ecological regions are presented in Table 3. In most instances CO-10 has performed the best, followed by JNR-3B-1008 and HPB 83-4. In the dry season, yields tend to be higher compared to the wet season, due to more light, uniform availability of soil moisture through irrigation and less pests and diseases. Lower yields recorded at Makandura (in 1981 and 1984 wet seasons) and Girandurukotte are attributed to erratic rainfall and poor drainage conditions, respectively. Apart from varietal evaluation not much work has been done by way of breeding. Selection of single plants is made in local populations for desirable characteristics like shorter plant height, early maturity (three months), loose panicle structure, uniform maturity, resistance to pests, diseases and lodging. Hybridization following the conventional methods and induced mutation breeding to develop new and widely adaptable varieties of millet in general, is important to intensify research in crop improvement for the future.

BIBLIOGRAPHY

Research Highlights No. 23 (1985), Research Division, Department of Agriculture, Peradeniya, Sri Lanka.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MI</td>
<td>KOC</td>
<td>MK</td>
<td>AP</td>
<td>KOC</td>
<td>MK</td>
</tr>
<tr>
<td>CO 10</td>
<td>2.02</td>
<td>4.73</td>
<td>0.87</td>
<td>2.36</td>
<td>1.92</td>
<td>0.48</td>
</tr>
<tr>
<td>KM 1</td>
<td>1.82</td>
<td>3.47</td>
<td>0.80</td>
<td>2.29</td>
<td>1.46</td>
<td>0.43</td>
</tr>
<tr>
<td>HPB 83-4</td>
<td>1.59</td>
<td>3.77</td>
<td>0.71</td>
<td>2.63</td>
<td>2.24</td>
<td>0.27</td>
</tr>
<tr>
<td>HR 231</td>
<td>1.73</td>
<td>5.58</td>
<td>0.66</td>
<td>2.31</td>
<td>1.68</td>
<td>0.81</td>
</tr>
<tr>
<td>PR 1091</td>
<td>1.87</td>
<td>3.65</td>
<td>0.44</td>
<td>2.14</td>
<td>1.18</td>
<td>0.14</td>
</tr>
<tr>
<td>JNR 3B-1008</td>
<td>1.83</td>
<td>5.22</td>
<td>0.62</td>
<td>2.65</td>
<td>2.44</td>
<td>0.40</td>
</tr>
<tr>
<td>MI 302 (CHECK)</td>
<td>1.89</td>
<td>4.24</td>
<td>0.29</td>
<td>1.22</td>
<td>1.68</td>
<td>0.78</td>
</tr>
</tbody>
</table>

* Locations: MI = Maha Illuppallama
 KOC = Kilinochchi
 AP = Angunukolapelessa
 TN = Thinnaveli
 Dry Zone
 GK = Girandurukotte
 WS = Wet season
 DS = Dry season
 Intermediate Zone
Finger millet (*Eleusine coracana* Gaertn.) is a very important crop in Nepal ranking fourth in area and production after rice, maize and wheat. In spite of its importance, it has received little attention from researchers, and is frequently referred to as one of the neglected crops of Nepal. This is in sharp contrast to the three major crops (rice, maize and wheat) which, fortunately, have received great deal of research support for crop improvement, both nationally and internationally. Also, whereas finger millet is often grown under stressful conditions, the three major cereal crops are commonly grown under more favourable conditions (Lohani, 1980).

Finger millet grain is an important food crop, especially for those living in the hills and mountains of Nepal where approximately 90 per cent of the millet production is concentrated. In Nepal, finger millet is rarely grown solely as a forage crop. However, the straw is virtually always used for forage, and the earlier the grain and straw can be harvested the higher the quality of the fodder. Green straw makes nutritious fodder while yellow-brown straw from fully matured and weathered plants is, of course, much less nutritious.

In Nepal, finger millet is commonly referred to as kodo. This terminology is in contrast to that in India where kodo is *Paspalum scrobiculatum* L. and *Eleusine coracana* Gaertn. is referred to as mandua, or ragi.

Millet Production

According to information from the Agricultural Statistics Division, of the Department of Food and Agricultural Marketing Services, Ministry of Agriculture, the area and production of finger millet in 1984 were estimated at 134,000 ha and 124,000 mt, respectively, giving an average yield of 926 kg/ha. (Anonymous,
1986). This was equivalent to about 5 and 3 per cent of the total cereal area and production, respectively. However, the land and aerial surveys conducted in 1984 by the Land Resources Mapping Project, Topographical Survey Branch, Survey Department, Ministry of Land Reform, projected a much higher area and production level of 235,000 ha and 252,000 mt, respectively, giving an average yield of 1074 kg/ha (Sherchan et al., 1986).

The area, production and average yields of the five most important cereal crops of Nepal are compared in Table 1.

TABLE 1
A comparison of the area, production, and average yields of five important cereal crops based on information from the Agriculture Statistics Division (ASD) and the Land Resources Mapping Project (LRMP); 1984

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Production '000 mt</th>
<th>Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>LRMP</td>
<td>ASD</td>
<td>LRMP</td>
</tr>
<tr>
<td>Paddy</td>
<td>1377 1417</td>
<td>2709 2177</td>
<td>1968 1536</td>
</tr>
<tr>
<td>Maize</td>
<td>579 688</td>
<td>820 763</td>
<td>1417 1108</td>
</tr>
<tr>
<td>Wheat</td>
<td>452 504</td>
<td>534 484</td>
<td>1181 961</td>
</tr>
<tr>
<td>Millet</td>
<td>134 235</td>
<td>124 252</td>
<td>926 1074</td>
</tr>
<tr>
<td>Barley</td>
<td>28 74</td>
<td>24 57</td>
<td>854 775</td>
</tr>
</tbody>
</table>

Geographically, Nepal can be divided into three major zones: the terai and inner terai in the southern part of the country; the hills in the middle; and high mountains in the north. Finger millet is grown as a summer upland crop up to 2500 m above sea level. Its major area of production lies in the mid hills, between 600 and 2000 metres (Table 2), which accommodates more than 50 per cent of the total population. The distribution of finger millet cultivation is shown in Fig. 1.

TABLE 2
Finger millet area, production and yield in three different ecological zones; 1985

<table>
<thead>
<tr>
<th>Ecological Zone</th>
<th>Area '000 ha</th>
<th>Production '000 mt</th>
<th>Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terai/Siwalik (up to 600 m)</td>
<td>11.6 7.7</td>
<td>10.5 7.6</td>
<td>906</td>
</tr>
<tr>
<td>Mid hills (600-2000 m)</td>
<td>116.9 77.3</td>
<td>106.2 77.0</td>
<td>909</td>
</tr>
<tr>
<td>Mountains (2000-2500 m)</td>
<td>22.6 15.0</td>
<td>21.2 15.4</td>
<td>941</td>
</tr>
<tr>
<td>Total</td>
<td>151.1 100</td>
<td>137.9 100</td>
<td>913 (Ave.)</td>
</tr>
</tbody>
</table>

Source: Agricultural Statistics Div., Dept. of Food and Agricultural Marketing Services, Ministry of Agriculture.
Fig. 1. Distribution Map for Finger Millet Production
(one dot is equivalent to 200 ha)

Legend
- Capital City
- Testing Sites

Appendix IV-1.
Based on available data for five years (1981-85) from the Agricultural Statistics Division, there is a 13.3 per cent increase in production which is mainly attributed to the increase in finger millet under cultivation (Table 3). However, the average yield per hectare has decreased. It is suggested that the decreasing trend in yield is due to lack of improved high yielding varieties, continuous depletion of the soil fertility and lack of proper management practices. Increased production of finger millet, and other crops, is needed in order to provide food for an expanding population which is increasing annually at a rate of 2.6 per cent. Therefore, it is imperative that sound improvement programmes on such crop as finger millet be fully supported (Anonymous, 1985).

<table>
<thead>
<tr>
<th>Year</th>
<th>Area ('000 ha)</th>
<th>Production ('000 mt)</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>122.1</td>
<td>121.7</td>
<td>997</td>
</tr>
<tr>
<td>1982</td>
<td>129.1</td>
<td>121.1</td>
<td>938</td>
</tr>
<tr>
<td>1983</td>
<td>123.9</td>
<td>114.9</td>
<td>928</td>
</tr>
<tr>
<td>1984</td>
<td>134.4</td>
<td>124.4</td>
<td>926</td>
</tr>
<tr>
<td>1985</td>
<td>151.1</td>
<td>137.9</td>
<td>913</td>
</tr>
</tbody>
</table>

Source: Agricultural Statistics Division, Department of Food and Agricultural Marketing Services, Ministry of Agriculture.

UTILIZATION

Finger millet is an important crop, especially for the subsistence farmer, and is usually cultivated under low management conditions. It is important for human food and animal feed and is included in various cropping patterns. It is especially valued for filling specific niches, or needs and because it often succeeds under stressful situations where other more "sophisticated" crops fail.

For human food

Several food preparations are made from finger millet. The most common is a thick porridge locally known as 'dhindo'. Other preparations are pancakes and roasted thick breads. Finger millet is also popular for making fermented beverages among certain communities of the country. As much as one-fourth of the total production of finger millet in Nepal goes into fermented alcoholic beverages.

Finger millet is one of the most important food crops of the economically suppressed but physically hard working people. It is appreciated by the people because it is digested slowly (apparently due to its rather high fibre content) and thereby furnishes energy for hardwork throughout the day after being eaten at a single morning meal.
Finger millet grain is reported to contain 9.2 per cent protein, 1.29 per cent fat, 76.32 per cent carbohydrates, 2.24 per cent minerals, 3.90 per cent ash and 0.33 per cent calcium. Vitamins A and B and phosphorus are also present in smaller quantities (Rachie and Peters, 1977).

For animal feed
The harvest residue of finger millet is extensively used as animal feed. Since finger millet harvest usually takes place at a time when other fodders are in short supply, at the beginning of the dry season and before the availability of rice straw, it is especially appreciated by farmers having livestock. Finger millet grain as such is not used as cattle feed but the spent brewer’s grain is an important animal concentrate.

FINGER MILLET IMPROVEMENT
In Nepal, there have been and are separate commodity stations and programmes for the three major cereal crops—the National Rice Improvement Programme (Parwanipur), the National Maize Development Programme (Rampur) and the National Wheat Improvement Programme (Bhairahawa). However, limited attention has been given to the improvement of Eleusine coracana.

There has been some screening of kodo germplasm at Rampur and Khumal research stations, since the early 1970’s. Approximately 700 exotic lines were obtained from India and 100 local land races were collected in Nepal. From the evaluation of these materials, two improved varieties, Dalle-1 (IE980 from India) and Okhale-1 (selection from local material), were released in 1980. Dalle-1 is adapted to the Inner Terai and mid-hills. Okhale-1 was released for use in the mid-hills and higher elevations. However, it was soon determined that these two varieties are limited in their range of adaptability.

There is need for an extensive collection and testing of both local and exotic sources of germplasm with emphasis on selection for broad adaptability. Some promising new lines have been identified such as NE 1703-34 which has better tolerance to waterlogged conditions; Rampur local for lower elevations; and NE 3801-2 has been found to do well at mid-hill testing locations at Khumal, Kavre Farm and Lumle (Singh and Tamulonis, 1985). The yield performance of some of the promising lines is given in Table 4 (mono-cropped) and Table 5 (relay cropped with maize).

GERMPLASM RESOURCES
People in the hills of Nepal have been growing finger millet since time immemorial. There has not been any authentic record of its introduction. Farmers have been selecting genotypes in accordance with their own specific needs.
TABLE 4
Yield performance of some promising lines of finger millet at two locations when tested as a sole crop (1985)

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Location yield (kg/ha)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Khumal</td>
<td>Kavre</td>
<td>Mean</td>
</tr>
<tr>
<td>NE 1703-34</td>
<td>2422</td>
<td>1157</td>
<td>1789</td>
</tr>
<tr>
<td>NE 6401-26</td>
<td>1753</td>
<td>1341</td>
<td>1547</td>
</tr>
<tr>
<td>Dalle-1</td>
<td>1762</td>
<td>1086</td>
<td>1424</td>
</tr>
<tr>
<td>NE 1001-1</td>
<td>1501</td>
<td>1329</td>
<td>1415</td>
</tr>
<tr>
<td>NE 1104-13</td>
<td>1365</td>
<td>1158</td>
<td>1261</td>
</tr>
<tr>
<td>NE 1102-12</td>
<td>1142</td>
<td>1183</td>
<td>1162</td>
</tr>
<tr>
<td>NE 1304-1</td>
<td>901</td>
<td>1217</td>
<td>1059</td>
</tr>
<tr>
<td>Mean</td>
<td>1549</td>
<td>1210</td>
<td>1380</td>
</tr>
</tbody>
</table>

TABLE 5
Yield performance of finger millet lines when tested as a relay crop with maize (1985)

<table>
<thead>
<tr>
<th>Lines</th>
<th>Location yield (kg/ha)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Khumal</td>
<td>Kavre</td>
<td>Mean</td>
</tr>
<tr>
<td>NE 3801-2</td>
<td>1559</td>
<td>1233</td>
<td>1396</td>
</tr>
<tr>
<td>Okhale-1</td>
<td>1126</td>
<td>1309</td>
<td>1217</td>
</tr>
<tr>
<td>NE 6401-26</td>
<td>873</td>
<td>1528</td>
<td>1200</td>
</tr>
<tr>
<td>NE 1304-1</td>
<td>664</td>
<td>1197</td>
<td>930</td>
</tr>
<tr>
<td>Mean</td>
<td>1056</td>
<td>1317</td>
<td>1186</td>
</tr>
</tbody>
</table>

The type of finger millet found in Nepal is considered to be of the Afro-Asiatic type with short glumes, lemmas and spikelets (Rachie and Peters, 1977). The panicles may be top curved, incurved or open type. At higher elevations, where rainfall is low, the more dominant type is top curved; whereas in the mid hills, where rainfall is high during the growing season, the open type is more common.

Recently, about 350 local land races from Nepal and 150 exotic introductions, mainly from East Africa, were collected and were tested at Khumal (1360 m.a.s.l.). Considerable genetic variation is noted in terms of maturity, plant type and pigmentation, panicle type and reaction to important diseases such as blast (Pyricularia sp.) and blight (Helminthosporium sp.). Most of the local land races are early types and short-statured but susceptible to blast and blight. The sources from East Africa, especially from Ethiopia, are free from diseases.
However, most of them are tall and late maturing under Nepal conditions. Recombining local elite lines with those of the Ethiopian highlands should be a good start in generating high yielding, promising lines of wider adaptability for the future improvement programme.

FINGER MILLET IMPROVEMENT STRATEGY

Thus far the finger millet programme has been neglected in the eyes of agricultural scientists and planners. However, recently the Ministry of Agriculture, His Majesty’s Government, has paid some attention to the development of this crop, and other minor crops, under the umbrella of the “Hill Crops Improvement Programme (HCIP)”. The following improvement objectives are being considered:

1) **Collection and conservation of local and exotic germplasm**

 Although some collections were made within and outside the country during the early seventies, systematic collections could not continue thereafter. Collection and documentation of germplasm of wide genetic base will be extensively carried out. Some 500 finger millet lines were collected in 1985.

2) **Selection and immediate release of finger millet varieties**

 From the local and exotic sources testing, evaluation and selection will be practised and seed of selected lines will be increased. Selection may be carried out on a single plant basis. From these lines, superior high yielding lines with desirable characters such as synchronous maturity, blast and blight resistance and non-lodging types will be selected and released.

3) **Long-term improvement programme**

 The major drawbacks of the Nepal cultivars are low yield and susceptibility to blast and blight diseases. Exotic sources, especially from East Africa, are found to be free from these diseases. Elite lines of local sources will be recombined with those of exotic sources to improve yield and other agronomic characters such as earliness, standability, plant type, threshability and disease resistance, especially to blast and blight.

4) **Finger millet genotypes adapted to relay cropping**

 Relay cropping with maize is the most dominant cropping pattern of finger millet cultivation. In Nepal advanced testings such as Advanced Varietal Trials, Farmers’ Field Trials and other outreach testing will be closely integrated with the existing farming/cropping systems. This may help to identify superior genotypes that fit into the relay cropping patterns.

 In order to accomplish the above objectives, the Ministry of Agriculture, Nepal, is initiating a phasewise programme with the help of external agencies such as USAID and IDRC.
OTHER MILLETS

The other small millets reported by Regmi (1982) in Nepal are:

1) Cheenu or proso millet (*Panicum miliaceum* L.)
2) Kaguno or Italian millet (*Setaria italica* L. Beauv.)
3) Sawan or Barnyard millet (*Echinochloa colona* L.)

The extent of cultivation and the yield potential of these crops have not yet been studied. However, they are mostly found to have been cultivated in the drier regions of the western and far western hills and mountains of Nepal. They are usually grown in association with other upland crops such as finger millet, amaranth or maize. Among them, cheenu (*Panicum miliaceum*) is found to be widely cultivated and used both as human food and animal feed.

LITERATURE CITED

IMPORTANCE AND GENETIC RESOURCES OF SMALL MILLETS WITH EMPHASIS ON FOX-TAIL MILLET (Setaria italica) IN CHINA

Chen Jiaju

From the numerous crops species grown in China, six crops are listed as millets in the literature.
1) Foxtail millet (Setaria italica Beauv.)
2) Proso millet (Panicum miliaceum Linn.)
3) Finger millet (Eleusine coracana Gaertn.)
4) Japanese millet (Echinochloa frumentacea Link)
5) Job’s tears (Coix lachryma-jobi Linn.), and
6) Pearl millet (Pennisetum americanum (L.) Leeke)

Besides, green foxtail (Setaria viridis) grows as a wild weed. Little millet (Panicum sumatrense) and ditch millet (Paspalum scrobiculatum) are not seen and even if they exist in China, they are very rare.

ECONOMIC IMPORTANCE OF MILLET CROPS

Foxtail millet is an important crop grown for food and feed in China. It is one of the main cereal crops in northern China, where the most important crops are wheat and corn. Foxtail millet, sorghum, sweet potato and soybean are of secondary importance. In southern China, foxtail millet is a minor crop.

Proso millet grown in northwest China is an important crop and in certain regions it is the main crop. There is considerable production in northeast China as well but considering the entire country, it is only of minor importance.

Finger millet is a minor cereal in China, mainly scattered in the provinces of the southern and southwestern parts of the country, such as in the southeast of Tibet, Yunnan, Guizhou, Sichuan, Hubei, Jiangxi, Zhejiang, Fujian and Guangdong provinces.
Japanese millet is cultivated in scattered patches in the lowlands and semi-arid regions in the north, distributed in Heilongjiang, Jilin, Liaoning, Hebei, Shandong, Jiangsu provinces.

Job's tears is a medicinal crop produced mainly in the wide area south of 33°N latitude in China, such as Hebei, Shanxi, Henan and Hubei. It is also grown in Shandong, Anhui, Sichuan, Yunnan, Guizhou, Hunan, Jiangxi, Jiangsu, Zhejiang, Fujian, Guangdong, Guangxi and Taiwan provinces. It can grow on uncultivated land where drought and waterlogging often take place.

FOXTAIL MILLET

Production and distribution

China ranks first in the production of foxtail millet in the world. Foxtail millet is grown across the entire country, but the principal growing region is within latitude 32°N to 48°N, and longitude 108°E to 130°E. Twelve provinces (regions) are included in this region, holding more than 95 per cent of the total growing area in the country. The distribution map of area under foxtail millet is shown in Fig. 1.

![Distribution of area under foxtail millet in China. A heavy dot represents 333 to 666 hectares. A light dot represents less than 333 hectares.](image-url)
Figure 2 shows the distribution of seeding area in percentage of foxtail millet to other field crops. Foxtail millet generally occupies 10 per cent or more, in certain districts more than 20 per cent and in a few districts up to 30 per cent of the total seeded area.

As for the production figures, there were no published figures for many years. However, recent production figures since 1981 are given in the Chinese Yearbook. The cropped area in 1980 and 1983 under foxtail millet was 3.87 and 4.09 million ha, respectively. This accounted for 6.4 per cent of the food crops in the main growing region.

This figure is much lower than that of the 7 million ha during 1937-1945 and in 1936 it was 8.09 million ha. This reflects the decline in area in the past 30 years. After 1954, the change in the cropping system of agricultural cooperatives decreased the millet area. The promotion of highly productive and economic crops also replaced millet area to some extent. However, it is
of importance to note that the cropped area has increased somewhat since 1982. Under the responsibility system, farmers can grow now whatever they want. It is estimated that 4 million ha area will be planted hereafter under foxtail millet.

The total production of foxtail millet in China was 7.55 million metric tonnes in 1983. So, the yield per hectare was 1,846 kg which is relatively high for this crop. It is incorrect to consider foxtail millet as a low yielding crop, the actual problem being that growing conditions in many areas are rather poor. The yield per unit area ranges from 1500-2250 kg/ha and in some regions, the yield is as high as 3750 kg/ha (Fig. 3).

Fig. 3. Distribution of area under foxtail millet in China.
The climate in the principal growing regions of foxtail millet is characterized by moderate temperatures and low precipitation (400-800 mm). Much of the millet is grown on hilly and mountainous land and foxtail millet prefers warm and sunny conditions. Its growth period is rather short and it tolerates drought and low soil fertility. It requires water in the later stages of growth, but waterlogging is harmful. The environmental conditions in the principal growing regions are very suitable to foxtail millet cultivation.

PROSO MILLET

Production and distribution
Proso millet is the second important millet in China. Though precise statistical figures are not available, experts estimate that this crop is now grown on about 1.3 million hectares. However, it was approximately 2 million hectares in 1957. The crop is distributed over arid and semi-arid areas of north, northwest and northeast of China. The main growing regions are Inner Mongolia, Shanxi, Gansu, Ningxia and Heilongjiang. There is only sparse cultivation in other areas.

Proso has an even a shorter growth period and is more tolerant to drought and salinity as it can grow under 0.35 per cent salt content. Under drought and poor soil conditions, proso millet gives a yield which surpasses the yield of all other crops.

PRESENT STATUS OF CONSERVATION OF GENETIC RESOURCES OF SMALL MILLETS IN CHINA

Small millets are very widely distributed in various ecological environments in China. During the long history of domestication and cultivation, small millets have derived a great diversity in genetic resources. In the late 1950’s and early 1960’s China began to collect plant genetic resources of field crops from all over the country. More than 40 kinds of crop plants totalling about 200 thousand accessions were collected, including foxtail millet, proso millet and other small millets.

Foxtail millet genetic resources

Collection
The collection of foxtail millet genetic resources began in the 1920s and large number of landraces were collected in 1950s. According to the statistics of Conference of Field Crops (1958), about 20,000 accessions have been collected, including a number of duplicates.

In 1954-55, the author was in charge of field observations, selection and elimination of duplicate materials collected from Hebei Province. During 1956, identification of 3500 accessions collected from Hebei and Shandong provinces
were carried out at the Institute of Crop Breeding and Cultivation, CAAS. Similar collection works have been carried out by other scholars and these materials are generally maintained by provincial agricultural academies.

In the 1980s, several thousand accessions of foxtail millet were collected through large scale crop recollection in Shanxi, Yunnan, Guishou, Goangdong, Hunan, Hubei, Jiangxi and Xinjiang Provinces (Districts). A few foxtail millet landraces were also obtained from various collection activities. Another 40 accessions were collected from Tibet in 1984.

Up to now, 350 accessions of foxtail millet have been introduced to China from foreign countries. We welcome the exchange of germplasm with other countries and the Institute of Crop Germplasm Resources, CAAS is responsible for this task.

Conservation

Dr. Xu Yun-Tian reported that 3,226 land races are stored in the Institute of Crop Germplasm Resources. Besides, about 12,000 accessions of foxtail millet are held in 45 local agricultural institutes in the northern part of China. Seed viability is maintained by rotational planting in fields. Usually, seeds are stored in seed depots, where the temperature and moisture are low and regenerated at an interval of three to five years.

In Qinghai Province, because of its dry summer and cold winter, a medium-term storage seed depot was built using natural low temperature and moisture for conserving seed materials. Other methods like locating seed storage facilities in very dry places, or storing small quantities of seeds in moisture proof containers have also been put to use.

At present, about 2,000 accessions are stored in a medium term bank at the Institute of Crop Germplasm Resources, CAAS Beijing, at temperature \(-10^\circ C\), in tight cans. Above all, a new gene bank for long term storage is already functioning in Beijing, and will conserve about 15 thousand accessions of foxtail millet seeds in next five years (1986-1990) at temperature \(-18^\circ C\) and relative humidity of 50 per cent in sealed vacuum cans.

Characterization and evaluation

Characterization for more than 20 agronomic and biological descriptors concerning plant morphology and yield characteristics has been underway for many years. More detailed observations on 60 or more descriptors were also made on 3,000 foxtail millet accessions and information on data cards are put in computerized CAAS ICGR Millet Germplasm Data Bank. A sample of this variation is shown in Fig. 4.

So far, individual research needs are met according to the selection and breeding requirements such as pathological resistance, stress resistance, blast, downy mildew and kernel smut resistance, drought tolerance, salt endurance and nutritional quality needs. The progress in this regard is encouraging and
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Accession Number</th>
<th>Mandarin Name</th>
<th>English Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1039</td>
<td>Long Zhua Gu</td>
<td>Dragon’s claw</td>
</tr>
<tr>
<td>2</td>
<td>1151</td>
<td>Ma Qing Miao</td>
<td>Green seedling</td>
</tr>
<tr>
<td>3</td>
<td>149</td>
<td>Diao Ba Qi</td>
<td>Handle</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>Huanong Si Hao</td>
<td>Huanong No. 4</td>
</tr>
<tr>
<td>5</td>
<td>359</td>
<td>Tie Ji Zui</td>
<td>Hen’s beak</td>
</tr>
<tr>
<td>6</td>
<td>381</td>
<td>Jian tou Mao Yi dan</td>
<td>Tapered e, long bristle</td>
</tr>
<tr>
<td>7</td>
<td>1138</td>
<td>Da Bai Gu</td>
<td>White grain, long duration</td>
</tr>
<tr>
<td>8</td>
<td>545</td>
<td>Qing ca Gen</td>
<td>Green stalk</td>
</tr>
<tr>
<td>9</td>
<td>73</td>
<td>Ma bian Zi</td>
<td>Whip</td>
</tr>
<tr>
<td>10</td>
<td>1012</td>
<td>Ma Zhua Huang Gru</td>
<td>Cat’s paw, yellow grain</td>
</tr>
</tbody>
</table>

Fig. 4. Sample of the variation in foxtail millet germplasm in China.

various resistant and stress tolerant materials have been identified (Tables 1 and 2).

Most studies on foxtail millet are described in the books *Manual of Cultivars of Chinese Foxtail Millet* and *Cultivation of Foxtail Millet in China*.

Proso millet genetic resources

Collection of proso millet started in 1940s and some 5000 accessions of proso millet were collected from 11 provinces in northern China. In these collected materials, 17 descriptors were studied and about 4200 accessions were
TABLE 1
Evaluation for pathological resistance in foxtail millet

<table>
<thead>
<tr>
<th>Disease</th>
<th>No. of accessions evaluated</th>
<th>No. of resistant lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast (Piricularia setariae)</td>
<td>landraces 13000</td>
<td>highly resistant 530</td>
</tr>
<tr>
<td>Downy mildew (Sclerospora graminicola)</td>
<td>representative varieties 419</td>
<td>highly resistant 27</td>
</tr>
<tr>
<td></td>
<td>land races 2900</td>
<td>highly resistant 366</td>
</tr>
<tr>
<td>Kernel smut (Ustilago crameri)</td>
<td>land races 2910</td>
<td>highly resistant 61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resistant to downy mildew and smut 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>highly resistant 17</td>
</tr>
</tbody>
</table>

TABLE 2
Evaluation for stress resistance in foxtail millet

<table>
<thead>
<tr>
<th>Stress</th>
<th>No. of accessions or land races screened</th>
<th>Rate I</th>
<th>Rate II</th>
<th>Rate III</th>
<th>Rate IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought tolerance</td>
<td>1015 (Pot screening) 1008 (Field screening)</td>
<td>7</td>
<td>12</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>Salt endurance</td>
<td>1929</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9.8</td>
</tr>
</tbody>
</table>

described. Among them 53 per cent are non-glutinous and the remaining 47 per cent are glutinous varieties. In China the non-glutinous varieties of proso are called ‘Ji’ and glutinous varieties are called ‘Shu’ as they had long been recognized as different crops since ancient times.

Ecological studies, classification and descriptions of 400 varieties are given in the book Manual of Cultivars of Proso Millet in China.
BREEDING AND VARIETAL IMPROVEMENT OF FOXTAIL MILLET IN CHINA

Chen Jiaju

BACKGROUND
Recognizing the role of improved varieties in agricultural production, many regional breeding organizations were established during the 1950's.

Germplasm of foxtail millet, are diverse in morphology and adaptability. Since the 1920's land races were collected and selections were carried out; by the end of the 1940's, several varieties such as Yanjing No. 811, Huanong No. 4 and Biangu No. 1 were released for cultivation.

In the beginning of the 1950's many local varieties were evaluated and extended to farmers. Meanwhile, single-ear and bulk selection approaches were followed at many research organizations and from the later part of the 1950's to early 1960's, pedigree selection became a primary approach. In 1959, the first variety “Xinnongdong No. 2” was bred through hybridization. By the 1970's 50 per cent of the varieties used in production were derived from hybridization breeding which has been the main method of foxtail millet improvement in the country. Induced mutation breeding by irradiation also started in the 1970's. Achievements in developing male sterile lines in foxtail millet have been made, and a line with high male sterility (more than 95 per cent) was reported, and hybrid F₁ seeds could be produced by the two-line method. Most of the land races could restore fertility when crossed with the male sterile line. Since some 5 per cent seeds could be harvested from the sterile line under open pollination, no maintainer line is necessary.

BREEDING METHODS
Foxtail millet is essentially a self-pollinated crop and usual breeding methods are all applicable and effective. The breeding methods adapted in China are briefly described here:
1) Introduction

Varieties introduced from abroad mostly exhibited poor adaptability and were susceptible to diseases. Direct use of this exotic germplasm was rare. However, a few lines from Korea showed good adaptability and grew well. From these introductions the varieties such as Yonyi and Jigu No. 2 were selected for direct use. Many introductions have been used as parents in hybridization. Therefore, we are interested in extending the scope of introduction from foreign countries.

2) Selection

Single-ear selection was effective in the early stages, particularly in the landraces having many derivative forms. However, continuous selection was not so effective in pure lines or homogeneous landraces.

3) Hybridization

Since the floret of foxtail millet is very small, hand emasculation is very difficult and ineffective. During the 1950's hot water emasculation technique was developed and widely used. But emasculation with hot water or other chemicals can hardly be complete. So, normally a dominant marker character is used to identify true F1s. In a hybridization programme, parents should be carefully chosen to produce genetically superior progenies. In special cases, interspecific hybridization may induce sterility, which is considered to be one of the ways of generating male sterile lines.

4) Rapid generation advancement

In China, rapid generation advancement (RGA) and overstepped advancement of selection are widely followed.

ACHIEVEMENTS

From 1949 to 1979, 158 varieties, developed by breeding, were grown in a total area of 4.5 million ha. Among the 422 varieties listed in the Manual of Cultivars of Chinese Foxtail Millet, 197 are derived from breeding. Table 1 shows the origin of these 197 bred varieties.

Four aspects have contributed to the increase in foxtail millet production.

1) Extensive use of improved varieties have greatly increased productivity of foxtail millet. Many varieties such as Longgu No. 23, Longgu No. 24, Suigu No. 1, Angu NO. 18, Hualian No. 1, Gonggu No. 6, Baisha No. 971, Baishazhan, Zhaogu No. 1, Meligu, Xinnong No. 724, Jingu No. 1 and Jingu No. 2 are grown in more than 67 thousand hectares (million mu in Chinese system). Improved varieties are popular in all areas except in mountainous regions. In certain locations, varieties were renewed two to three times.
TABLE 1
Methods adopted in bred varieties

<table>
<thead>
<tr>
<th>Method</th>
<th>No. of bred varieties</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure line selection</td>
<td>134</td>
<td>68.1</td>
</tr>
<tr>
<td>Hybridization breeding</td>
<td>57</td>
<td>28.9</td>
</tr>
<tr>
<td>Artificial induction</td>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td>197</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2) The level of resistance to lodging, diseases, insects and various forms of stress in improved varieties have been increased. Jigu No. 6 and Yugu No. 1 are resistant to lodging. Jigu No. 1, Jinggu No. 1 and Minquanglinggu are resistant to blast. Lujin No. 3, Beihuang No. 3 and Zhenggu No. 2 are resistant to green ear disease (downy mildew). Some of these varieties are grown in more than one hundred thousand hectares.

3) Development of early maturing varieties has facilitated the improvement in cropping systems. Early varieties can be sown after the harvest of winter wheat and they mature before the onset of sowing time for the next crop of winter wheat. In northeast China, early varieties can be grown in the region north of latitude 50°N.

4) Besides ordinary types, special types with glutinous, or white or green or grey endosperm and with good seed quality were also developed.

REGIONAL TESTS FOR VARIETAL EVALUATION

Three major locations for the regional test of foxtail millet cultivars were established namely highland spring sowing region, north China plain summer sowing region, and northeast China spring sowing region. In provinces, there are provincial, districts and country regional tests sponsored by local evaluation committees. The national evaluation committee for regional tests is responsible for the evaluation of eight crops including foxtail millet.

PRESENT STATUS OF FOXTAIL MILLET IMPROVEMENT

In north China, there are 12 provinces and districts where breeding units for foxtail millet are located. In them, there are several provincial academies of agricultural sciences that have undertaken primary work on foxtail millet breeding in Hebei province, Shanxi province, Heilongjiang province, Jilin province, Inner Mongolia Autonomous Region, Shandong province and Henan province. The present breeding goal is to develop varieties that are suitable for spring and summer sowing, have high yield potential, good stress resistance and good eating quality. Specific varieties are also bred for areas with one or
two major problems, like drought or/and cold weather, etc. Utilization of heterosis in foxtail millet has been included as one of the breeding goals.

MULTIPLICATION AND PROMOTION OF IMPROVED VARIETIES

Establishment of national seed companies was necessary to cope up with the multiplication and promotion of improved varieties. Localization of certain varieties in some areas necessitate seed production, standardization and mechanization of foxtail millet cultivation. More than 2,300 seed companies have been established at various levels of local government provincial, district and country level. Multiplication of seed is undertaken according to the national seed production procedures (Fig. 1). Since foxtail millet has a high reproductive rate, field selections, which is a traditional method, can still be used by farmers who might probably develop certain special types for steadying the foxtail millet production in their areas.
BREEDING OF PROSO MILLET (*Panicum miliaceum* L.) IN VOLGA REGION OF USSR

V.A. Ilyin and E.N. Zolotukhin

The main millet growing areas of USSR are the Volga region and parts of Kazakhastan, which are characteristic of semi-arid conditions, with an annual rainfall of 250-400 mm. As only 35 to 40 per cent of the precipitation is received during the crop growth period, the breeding strategies are to evolve suitable varieties for these conditions.

Many improved varieties have been developed at the Millet Breeding Department of the Agricultural Research Institute for Southeast Regions located at Saratov and these varieties have occupied more than 50 per cent of the millet growing area in the U.S.S.R.

The present breeding strategy is to develop varieties with the following agronomic characteristics:

1) Drought tolerance
2) Early maturity
3) High crop growth rate and photosynthetic efficiency
4) Bigger panicle size and higher grain number
5) Resistance to diseases and pests
6) High quality of the grains
7) Wider adaptability to suit the local agroclimatic conditions.

With the above objectives in mind, breeding work is being carried out at this institute.

An important subspecies of the proso millet (*Sanguineum*) with red kernels is widespread in the dry southeast areas. This subspecies is fast growing with vertical development of the root system, a high hydraulic conductivity, compact dense panicles and glumes. The important feature of the seed is its maintenance of bright yellow colour till harvest and during storage. We are carrying out our breeding programme with the existing variability in this subspecies.
The main breeding method adopted in proso millet is intraspecific hybridization. We have been consistently improving the methodology of crossing to suit the local climatic conditions. Crossing is done by squeezing the style and stigma and it does not warrant opening of florets again for pollination. The best results are obtained when pollination is carried out by dry emasculation as per the method of Borlaug (twirl method). Often as high as 70 per cent success is achieved in obtaining hybrid seeds which otherwise is not possible by adopting other methods.

In our laboratory, considerable work is being carried out on the theoretical genetic aspects. An attempt was made to study the genetics of grain colour. The grain colour is determined by at least four genes, but these are not completely dominant. One of the genes seems to code for white colour, which acts as an inhibitor. The dominance of colours follows order of: white, brown, grey, cream and red colour.

With regard to seed size, we have established that the lower test weight is dominant over the higher test weight. By the hybridization programme, it has been possible to increase the range in 1000 seed weight from 5.5 to 6.7 g which was prevailing in varieties grown in the 1930's to 7.4 to 8.19 g in the present-day varieties. The local land races possess the dominant genes and hence their grain weight is always low. They might have inherited this character from their wild ancestors and through natural selection. This resulted in smaller grains and more grain number per panicle.

The variety Saratov 853 was developed with increased test weight of 7.5 g. However, despite considerable selection work carried out between 1938 and 1968, it was not possible to increase the seed weight in the local varieties. On the contrary through the hybridization programme, recessive genes were combined and significant improvement was made in increasing the 1000 seed weight. Some of the newly developed cultures have a test weight of even 10 g. However, it is necessary to mention here that although test weight was increased, the seed viability seems to have decreased. Further, it can be concluded that it may not be possible to increase the test weight beyond 9.0 g with longer viability.

The inheritance pattern with regard to seed number per panicle has been extensively worked out. The same plant material which was used for increasing test weight was used for this purpose also. In the F2 generation, seed number is super-dominant, consequently resulting in higher seed number than the parental lines. Breeding for high seed number is relatively difficult, irrespective of its dominance nature and this character is always associated with a few other important characters which determine productivity. It is difficult to achieve high seed number through mutation breeding. With an objective to evolve a suitable variety with high seed number, we adopted the following approaches:

1) The parental lines selected for the breeding programme were predominantly varieties with high yield per unit area through high seed number
per panicle. This facilitates considerable variability in the subsequent generations.

2) Selection was carried out under conditions which facilitated the development of more seed number per panicle.

3) Secondary selection pressures were applied to identify lines with high seed number.

4) During the process of selection, importance was given to synchrony in flowering, complete grain filling from the lower parts of the panicle with high density and high flower to seed ratio or seed fertility.

The main emphasis in proso millet improvement in our institute has been to develop varieties with high productivity, good grain quality and disease resistance particularly for grain smut.

BREEDING FOR PRODUCTIVITY

Selection of parent materials

One group of parents consisted predominantly of high yielding local cultivars having local adaptation with high plasticity. The other group was selected taking into consideration the ecological and geographical classification of proso millet developed by Lisov.

The best results were obtained by crossing cultivars from the dry plains of the Volga, Ukrainian and Kazakhstan regions. For instance the variety Scorospeloe 66 was developed by crossing Aureum 1113 (Kazakhstan group) with Saratov 853 (Volga group). Similarly, the variety Volga 3 was evolved by crossing hybrid populations of Victoria 48 (Khazakhstan) with the hybrid populations obtained from, Orenburgskoe 42 and Sanguineum 75 (Volga group).

Whenever diverse types were used in hybridization we adopted a multistep crossing programme, first developing stable lines and further crossing these lines to develop the required cultivars. For example the variety Start was developed by this method. Hybridization was started in 1956. The female parent was obtained by multiple crossing and through selection in F3 generation. From this multistep programme a uniform population was developed known as Cremy-15. The male parent Sanguineum-7 was developed in the sixth generation after crossing and in 1969, these two lines were crossed which resulted in the development of the variety start which is widely cultivated now.

The salient features of such a multistep programme are:

1) Involvement of diverse ecological and geographical groups;
2) Repeated hybridization with samples from the Volga group;
3) Continuous directed selection;
4) Repeated involvement of local high yielding cultivars with high grain quality, and
5) Appearance of transgression in a number of characteristics.

The investigations carried out led to the conclusion that there are two distinct biotypes with two distinct yield attributes. The contribution of these factors were assessed by using a row of formulae which helped us to identify characters associated with higher productivity.

The local varieties are generally early maturing, but with small seeds. Further, they are also drought resistant with high survival under stress. Further development of this biotype resulted in evolving a variety, Scorospeloe 66 in 1962. Similarly a few other varieties like Saratov-3 and Saratov-6 were developed during the later years. The main characters associated with productivity in these two lines were higher survival under stress and higher plant density per unit land area.

Working on various aspects of improving productivity Arnold selected from the locals a few late maturing lines from which the variety Saratov 853 was selected later on. From this biotype a few other varieties were developed like Volga-3, Saratov-3 and Start. These varieties are relatively long duration types with bigger panicles and high grain number. In these varieties the grain number per unit land area was high and the yield increase was also due to higher seed weight. The biotype-I is more drought resistant and makes best utilization of winter and spring precipitation whereas the biotype II is more productive and more responsive to soil fertility and precipitation during the later half of the summer season. The relative performances of these varieties are given in Table 1.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (q/ha)</th>
<th>Yield increase over Saratov-853 (q/ha)</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1983</td>
<td>1984</td>
<td>1985</td>
</tr>
<tr>
<td>Saratov-3</td>
<td>I</td>
<td>20.2</td>
<td>11.0</td>
</tr>
<tr>
<td>Saratov-6</td>
<td>II</td>
<td>21.4</td>
<td>13.1</td>
</tr>
<tr>
<td>Saratov-853</td>
<td>II</td>
<td>18.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Volga-3</td>
<td>II</td>
<td>20.7</td>
<td>13.2</td>
</tr>
<tr>
<td>Start</td>
<td>II</td>
<td>24.5</td>
<td>14.5</td>
</tr>
<tr>
<td>(Sanguineum-7 × Brown)× Start</td>
<td>II</td>
<td>25.4</td>
<td>16.1</td>
</tr>
<tr>
<td>(Start × Scorospeloe-66) × Orel-92</td>
<td>II</td>
<td>25.1</td>
<td>16.0</td>
</tr>
<tr>
<td>CD at 5%</td>
<td></td>
<td>2.7</td>
<td>2.2</td>
</tr>
</tbody>
</table>
The new lines of biotype-1 gave higher yield over the check variety Volga-3 by about 3.1 to 6.9 q/ha. This indicates that by increasing the duration up to a reasonable limit, productivity could be enhanced.

Selection for grain quality

The work in this area is directed to improve technological and consumer qualities of the seeds of the varieties. Among the varieties developed in our laboratory, variety Saratov-2 could not meet the consumer requirements.

As regards quality parameters, the selection work is carried out for bigger seed size, bright endosperm colour and density, and resistance to Melanos disease. In all such studies, the standard variety for quality comparison has been Saratov 853 although in recent years there are many varieties with better grain quality than Saratov 853. Another variety Saratov 6 is more stable in grain quality across ecological zones.

Among many grain quality characters, the brightness of the endosperm which contains carotenoids and resistance to Melanos disease are most important. Varieties with bright yellow endosperm are preferred by consumers. The brightness of the endosperm is directly related to the content of the carotenoids. Hence brighter the yellow colour greater the carotenoid content. Such types are not only preferred by consumers but also are more nutritious. However, this character is unstable and hence needs careful assessment. Red-coated varieties are preferred mainly because they offer protection from light degradation of carotenoids under field conditions.

To improve seed quality characters, variety Sanguineum-7 is often used in the crossing programme. This variety was developed as a result of transgression and possess bright endosperm with more carotenoid content and also high test weight (Table 2).

In some years due to the attack of Melanos disease the endosperm becomes black. To some extent the varieties with big seed and inadequate compactness of the glumes are susceptible to this disease. Attempts have been

<table>
<thead>
<tr>
<th>Variety</th>
<th>1000 seed weight (g)</th>
<th>Brightness of endosperm (index)</th>
<th>Extent of grain filling (index)</th>
<th>Caroteneoids (mg/kg)</th>
<th>Infected seeds (%)</th>
<th>Test of prepared produce (index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanguineum-75</td>
<td>7.9</td>
<td>2.9</td>
<td>3.0</td>
<td>9.8</td>
<td>1.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Aureum Chakinskoe × Aureum-38</td>
<td>8.2</td>
<td>2.2</td>
<td>2.2</td>
<td>8.9</td>
<td>7.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Sanguineum-7</td>
<td>8.5</td>
<td>3.9</td>
<td>3.9</td>
<td>12.4</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>CD at 5%</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>1.1</td>
<td>1.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE 2
Grain quality of Sanguineum-7 and its parent forms, 1977-79
made to transfer resistance to this disease by crossing resistant genotypes from world germplasm but have not met with any success. There is always a negative relationship between the seed size and the extent of disease-affected seeds.

The best approach to identify types having resistance to Melanos has been through the adoption of suitable breeding techniques. This approach only ultimately led to the development of resistant types with big seed size like Saratov-6.

Breeding for smut resistance

Smut is the most widespread disease on proso millet and resistance is controlled by a single gene. A selection procedure has been developed to identify more resistant varieties. The main feature of this selection process is to adopt vigorous roguing at different stages of breeding programmes right from the beginning.

Breeding for resistance is a difficult and slow process because most of the resistant donors are poorly adapted to the local conditions. The bulk of the breeding material has been discarded purely based on one character, susceptibility to smut. We feel that the selection of resistant types in infected sick plots is not always advantageous, besides it is often difficult to combine high resistance with other desirable plant characters.

One of the important aspects of this programme was to identify the suitable parent material. Initially, we used the varieties VNIS 29 and VNIS 223 × 1843 as resistant donors. However, these types did not possess the required drought resistance, or other agronomic characters; they were of long duration and seed quality was poor. So, we adopted a multistep selection procedure by crossing types of different ecological and geographical forms. This resulted in the development of the variety Saratov-2, the first resistant variety which is widely cultivated in the drought-prone areas of southeastern U.S.S.R.

From 1967 onwards we started adopting the backcross breeding technique to obtain better results. By this method it was possible to develop Saratov-3 resistant to smut. This variety possesses all other economical and biological properties as that of Scorospeloe 66 from which it was developed. They are isogenic except for resistance to smut. For the transfer of resistance, line no. 356 has been used, which is acclimatized to local conditions. Further breeding programme for smut resistance was carried out by using this material which ultimately resulted in the evolution of varieties, Sanguineum-7, Saratov-3 and Saratov-6.

These new varieties were evaluated against the local races of smut populations. In these resistant lines, the gene responsible for resistance was obtained predominantly from a population 1843 (K-8753) and was named as Sph-1. As we started growing relatively resistant types under field conditions new virulent smut races emerged and these resistant varieties became susceptible. The new strain of smut developed in Saratov region was named No. 2 and
the strain which was developed in the Ukraine region was named No. 3. Work is now in progress to identify new donors from the national collection. Our studies have shown that the character is controlled by a single dominant gene.

From the national collection it was possible to identify lines which contained a resistant gene which is named Sph-II. This possesses resistance to race 1 and 2 of smut. Similarly we have identified lines containing gene named Sph-III, which is resistant to race 3. We have already developed resistant populations with high productivity and grain quality on par with the standard variety.

Our results have shown that breeding for smut resistance is more complicated than we thought earlier. In this connection we feel that it is necessary to develop multiline varieties, to adopt phytosanitary measures and frequent change of the varieties in order to maintain the level of resistance for a long period.
III

IMPORTANCE, GERMPLASM AND VARIETAL IMPROVEMENT IN AFRICA
FINGER MILLET RESEARCH IN THE SADCC (SOUTHERN AFRICAN) REGION

INTRODUCTION

Among the millets of the world, finger millet ranks fourth after pearl millet (*Pennisetum americanum* L.), foxtail millet (*Setaria italica*), and proso millet (*Panicum miliaceum*). There are two regions of the world where finger millet is most intensively grown; immediately surrounding Lake Victoria in East Africa, the south-eastern parts of Karnataka and parts of Tamil Nadu and Andhra Pradesh in southern India. These regions account for nearly 75 per cent of the world’s production of this cereal (Rachie, 1975).

In Africa, finger millet is produced principally in Uganda, Tanzania, Rwanda, Burundi, Eastern Zaire, Kenya and to a lesser extent in Ethiopia, Sudan and Somalia. It is also grown in Zimbabwe, Malawi, Zambia, Tanzania, Botswana and Madagaskar. In central and western Africa, it is grown to a limited extent in central Africa, southern Chad and northeastern Nigeria. In Uganda, finger millet is the most important cereal crop equaling the acreage and production of other cereals combined. It is really the only other millet of consequence after pearl millet throughout Africa (Leonard and Martin, 1963; Rachie, 1975). The most important region is in the vicinity of Lake Victoria and Lake Kyoga and between Lake Tanganyika and Lake Victoria (Johnson and Raymond, 1964).

The Southern African Development Coordination Conference (SADCC) Region consists of nine countries: Angola, Botswana, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, Zambia, and Zimbabwe. All these countries are south of the equator. Finger millet is the most important small millet grown in this region. Teff is planted in certain areas of Swaziland but no scientific information is available on this crop. Some research work and germplasm col-
lections of finger millet were carried out in the last few years in several SADCC countries. A systematic regional finger millet programme was started in 1985 by SADCC/ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) Sorghum Millet Improvement Project at Matopos (Zimbabwe) for the SADCC region. In this paper, efforts are made to review the knowledge available on finger millet in the region.

AREA AND PRODUCTION

The area and production of finger millet is often combined with pearl millet and in some countries such as Angola and Malawi, the statistical division reports millets and sorghum combined together. The figures vary greatly from source to source and year to year. However, the area and production data on finger millet is available for Zambia and Zimbabwe which is presented in Tables 1 and 2 respectively. Over 100,000 ha of finger millet is grown in each of these two countries with an average yield of 500 kg/ha. Tanzania is the other important country where over 100,000 ha is grown. In Malawi, Mozambique and Botswana, finger millet is grown in patches. The crop is not reported in Lesotho and Swaziland.

GERmplasm COLLECTION AND MAINTENANCE

Finger millet germplasm has been collected in certain regions of Zimbabwe, Zambia, Malawi, Mozambique, Tanzania, and Botswana during the past few years. The present status of germplasm collections country-wise is described here.

TABLE 1

<table>
<thead>
<tr>
<th>Province</th>
<th>Area ('000 ha)</th>
<th>Production (tonnes)</th>
<th>Area ('000 ha)</th>
<th>Production (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>7.4</td>
<td>4100</td>
<td>13.1</td>
<td>6500</td>
</tr>
<tr>
<td>Copper belt</td>
<td>0.8</td>
<td>300</td>
<td>8.8</td>
<td>13900</td>
</tr>
<tr>
<td>Eastern</td>
<td>11.9</td>
<td>6000</td>
<td>5.4</td>
<td>1000</td>
</tr>
<tr>
<td>Luapule</td>
<td>9.6</td>
<td>7600</td>
<td>0.3</td>
<td>50</td>
</tr>
<tr>
<td>Northern</td>
<td>43.6</td>
<td>38700</td>
<td>4.0</td>
<td>4500</td>
</tr>
<tr>
<td>N. Western</td>
<td>9.4</td>
<td>6500</td>
<td>11.7</td>
<td>6000</td>
</tr>
<tr>
<td>Southern</td>
<td>7.1</td>
<td>2200</td>
<td>15.0</td>
<td>8400</td>
</tr>
<tr>
<td>Western</td>
<td>40.7</td>
<td>19500</td>
<td>19.3</td>
<td>11100</td>
</tr>
<tr>
<td></td>
<td>130.5</td>
<td>84900</td>
<td>77.6</td>
<td>51450</td>
</tr>
</tbody>
</table>

TABLE 2
Area in Zimbabwe planted (in hectares) to maize, sorghum, finger millet and pearl millet in the
1980-81 summer season

<table>
<thead>
<tr>
<th>Province</th>
<th>Maize</th>
<th>Sorghum</th>
<th>Finger millet</th>
<th>Pearl millet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mashonaland West</td>
<td>66,534</td>
<td>1,910</td>
<td>2,755</td>
<td>151</td>
</tr>
<tr>
<td>Mashonaland East</td>
<td>85,960</td>
<td>1,507</td>
<td>4,833</td>
<td>2,560</td>
</tr>
<tr>
<td>Mashonaland North</td>
<td>44,696</td>
<td>5,663</td>
<td>3,124</td>
<td>3,260</td>
</tr>
<tr>
<td>Matebeleland South</td>
<td>92,770</td>
<td>59,322</td>
<td>6,735</td>
<td>97,621</td>
</tr>
<tr>
<td>Midlands</td>
<td>178,592</td>
<td>12,984</td>
<td>26,984</td>
<td>72,479</td>
</tr>
<tr>
<td>Victoria</td>
<td>275,572</td>
<td>32,775</td>
<td>53,244</td>
<td>40,938</td>
</tr>
<tr>
<td>Manicaland</td>
<td>88,220</td>
<td>44,818</td>
<td>21,931</td>
<td>26,162</td>
</tr>
<tr>
<td>Total</td>
<td>875,859</td>
<td>185,748</td>
<td>118,784</td>
<td>271,750</td>
</tr>
</tbody>
</table>

Botswana
During 1985, the International Board for Plant Genetic Resources (IBPGR)/ICRISAT in collaboration with the Department of Agricultural Research (DAR), Botswana, collected six cultivated samples of finger millet from the northern province (Appa Rao et al., 1986a).

Malawi
During March-April, 1979, ICRISAT/IBPGR organized germplasm collecting expedition to Malawi in collaboration with the Ministry of Agriculture and Natural Resources of the Government of Malawi. A total of 1106 accessions were collected including 190 of finger millet (Appa Rao, 1979). These accessions were deposited at the Chitedze Agricultural Research Station. The collecting mission moved from Shire Valley in the extreme south to north through the Lakeshore, Lilongwe, Kasungu and up to Rumphi. The local name of finger millet is “Mawere” in the south, “Kapuku” in the central region and “Lupoko” in the northern region. It is extensively grown in the northern region around Mzimba and Karonga. There are two distinct types based on the head characters. The open type has long thin ribbon like fingers that open outward. It is called ‘Phazi-la-ngobuu’ which means elephant foot. The fist type in which short fingers fold inwards, is called ‘Fumbata’. The landraces are classified into two maturity types. The early type which matures in about three months is called ‘Nthanga’ which is common around Mzimba. It has incurved heads and the seed is very small. The late maturing types which take more than 120 days to mature produce large heads and bold grain (Appa Rao, 1979).

Mozambique
During 1981, IBPGR/ICRISAT in collaboration with University of Edurado, Mondlane (UEM) and National Institute of Research in Agronomy
(INIA), Maputo organized a germplasm collection mission in Mozambique. This mission was mainly aimed at collecting groundnuts along with other crops which matured during the collection period. Two samples of finger millet were collected (Rao, 1981). Locally finger millet is known as ‘Marupi’. It was suggested that an expedition timed during May-June should recover much variability in sorghum, pigeonpea, pearl millet and finger millet from most of the regions of Mozambique.

Tanzania

Two collecting missions were organized by IBPGR/ICRISAT in July 1978 and in May 1979. The regions covered were Morogoro, Dodoma, Singida, Shinyanga, Mwanza, Musoma, Babati, Kondoa, and Iringa. From these regions five finger millet accessions were collected. The important regions for finger millet are Rukuwa, Mbeya, Dodoma, Ausha, and Moshi where collection trip should be organized in near future. *E. indica* and *E. multiflora* are the wild types which are commonly found in Tanzania (Rao and Mengesha, 1980).

Zambia

From 1980 to 1984, four collecting missions were organized by the IBPGR in collaboration with ICRISAT and other organizations in which a wide range of crops and diversity were collected from all parts of the country. This included 273 samples of finger millet (Attere, 1985). Finger millet is locally known as ‘Luku Kachiaye’, ‘Katombela Massa’. Attere (1985) has indicated that the crop genetic resources in Zambia have been well collected. To conserve this germplasm, the Zambian Government is establishing a cold storage facility with assistance from the Swedish Government at the Mount Makulu Research Station. Zambia has been identified as a possible site for the SADCC centre for the mobilization of plant genetic resources.

Zimbabwe

Finger millet is the third important crop next to maize and sorghum in the communal areas of Mashonaland, Midlands and Manicaland provinces. It is referred by one of its vernacular names, such as ‘Rupoko’, ‘Rukweza’, ‘Njera’ or ‘Zviyo’. Two germplasm collecting expeditions were launched in Zimbabwe during 1982 and 1985 jointly by IBPGR and ICRISAT in collaboration with the Department of Agriculture of Zimbabwe (Appa Rao and Mengesha, 1982 and Appa Rao et al., 1986b). Variations existed for head compactness, number, length and type of finger, and grain colour. In some samples the fingers were stiff, erect and more or less divergent while in others they tend to curve inwards at the top. At several locations a mixture of wild and weedy types were found along with the cultivated types. In addition to cultivated finger millet, six wild accessions were also collected (Appa Rao and Mengesha, 1982).
VARIETAL IMPROVEMENT

In Southern Africa, breeding work on finger millet has been carried out in Zambia and Zimbabwe. Recently in other countries, evaluation of local accessions has started.

Zambia

At Mount Makulu Research Station in Zambia, breeding work started in the early sixties. This work produced a high yielding variety called M 144. This variety was very susceptible to lodging and had a less than desirable grain colour. Selections were made from natural outcrosses of M 144 for yielding ability and lodging resistance. During the course of breeding, the single plant selection method was used initially mainly to obtain pure strains. Later hybrid plants were selected and further developed by using the pedigree method. Varieties and selections were tested in two groups of variety trials in the main finger millet growing areas. Mean yields of the experiments were never under 2000 kg/ha while the best yielding strains often exceeded 4000 kg/ha level (Sarmezy, 1978).

From this programme a new non-lodging variety named Steadfast was selected. This variety was derived from an outcross of M 144 x Line 197. The grain colour was light brown and more acceptable than M 144. The variety Steadfast is recommended for all areas, especially where management levels are good. Attempts to produce improved strains from M 144 x E. africana outcross failed, and the selections were discarded after five generations (Sarmezy, 1978).

The work was restarted in 1984 by evaluating 175 local collections and the introduced genotypes. Twenty lines were retained for retesting during this year which were superior to Steadfast.

Zimbabwe

A brief reference to the selection of high yielding strains of E. coracana in Zimbabwe was made by Hill (1945) and the author concludes that slow-growing millets like Eleusines and Pennisetums are considerably lower yielding than sorghum and are therefore of lesser value for food consumption. He indicated that the chief advantage is their immunity against stem borer under Zimbabwe conditions.

Breeding of finger millet was initiated in as early as 1968 at Chibero Agricultural College, where students from African areas throughout Zimbabwe were asked to bring in unthreshed heads from standing plants of genetically mixed populations. Sixty-four pure lines were obtained by threshing single plants. These lines were evaluated for four years. The main conclusions were: there were significant differences among pure lines for yield, threshing percentage, grain weight per head, grain size, days to maturity and plant height. Grain
yield was highly significant and positively correlated with grain weight per head, seed number per head, and threshing percentage. There was positive correlation between grain weight per head and the number of seeds produced per head. It appears that under local conditions the important characteristics of high yielding pure lines are high grain weight per head, which is brought about by high number of seeds per head, high threshing percentage and early maturity (M'shonga, 1974).

Systematic efforts were made in 1982 in the research project that was initiated by the Crop Breeding Institute of the Research and Specialist Services. The project started with the collection of different varieties grown by communal farmers throughout the country. All the samples collected were evaluated at Gweti variety testing centre and Panmure Experiment Station during the 1984-1985 rainy season. Promising lines were further evaluated during the 1985-86 season. The selected lines will be used to make crosses among themselves and with the introduced lines from elsewhere to produce high yielding varieties.

The reports on a variety trial of finger millet at the Lilongwe station near Mzimba was reported in Nyasaland quarterly (Nyasaland, D.A. 1952). The varieties, Phagalala and Fumbata gave the highest grain yields of 1937 and 1880 kg/ha respectively at this location. Some work was carried out in the seventies and four lines were identified.

SADCC programme

SADCC/ICRISAT regional program has evaluated 394 accessions collected from Zimbabwe (374), Zambia (14), Malawi (4) and Tanzania (2) during the 1985-86 rainy season. Sixty-seven accessions were retained for further testing. A total of 1285 accessions have been obtained (Table 3) and the seed is being multiplied. The selected accessions from the previous season and the newly introduced accessions will be evaluated at four or five locations during the coming rainy season. The selected entries will be utilized in a breeding programme.

CROPPING SYSTEMS

A kind of primitive agriculture is practised in Tanzania as described by Lunan (1950). This consists of turning over grassy chunks of sod to form mounds about 1 m in diameter and 60 to 75 cm high. Sometimes trees and bushes may be incorporated with the mound to be burnt during the dry season. The first crops to be planted are beans, cassava, sweet potatoes, chickpeas and wheat during the first season from February to April. Following summer rains, the mounds are broken and spread in November and finger millet or maize are sown. After harvesting in July, the mounds are again formed to cover the weed patches, resown with finger millet, and harvested the following June.
TABLE 3
Finger millet germplasm accessions available at SADCC/ICRISAT Regional Centre at Matopos (as on 20 September 1986)

<table>
<thead>
<tr>
<th>Country of origin</th>
<th>NP<sup>a</sup></th>
<th>PCQ<sup>b</sup></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimbabwe</td>
<td>376</td>
<td>1</td>
<td>377</td>
</tr>
<tr>
<td>Zambia</td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Malawi</td>
<td>194</td>
<td>0</td>
<td>194</td>
</tr>
<tr>
<td>Tanzania</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Uganda</td>
<td>27</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>Kenya</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zaire</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mali</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>South Africa</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>India</td>
<td>0</td>
<td>649</td>
<td>649</td>
</tr>
<tr>
<td>Total</td>
<td>618</td>
<td>667</td>
<td>1285</td>
</tr>
</tbody>
</table>

^a = Accessions contributed by national programmes
^b = Accession contributed by Plant Germplasm Quarantine Centre, Beltsville, U.S.A.

In Kenya and Uganda, a similar practice is followed known as Chitemane cultivation: This consists of chopping down trees or lopping tree branches from a wide area, piling them over a much smaller area, burning and then sowing millet in the ashes at the beginning of the rains and without any further cultivation.

In Zimbabwe, finger millet seed is broadcast and brushwood is drawn over immediately or the field is trampled with animals. Gaps in the fields are filled by transplanting after thinning when the soil is moist. Weeding is commonly done by hand and fertilizers are seldom applied to the crop except by a few farmers around urban areas. The dried heads are stored without threshing. The crop matures in three to five months depending on the variety and the temperature. Finger millet is often mixed with maize, sorghum, groundnut, beans or cowpeas. However, it is also grown as a sole crop especially on virgin land after slashing and burning the bush. The most common rotation is groundnut, finger millet, and maize. Cucurbits are also grown along with finger millet, pearl millet and groundnut.

PRODUCTION TECHNOLOGY

Fertilizer use

In Malawi, application of kraal manure to finger millet increased yields by 400 per cent at Zomba in 1950 (Nyasaland, D.A. 1952). Similar experiments
Small Millets

carried out at Lusaka (Zambia) in 1954, resulted in yields of approximately 1600, 500, and 350 kg of grain per hectare from manurial treatment of 6, 2 and 0 tons of farmyard manure per hectare (Rhodesia, C.A. 1955).

Agronomic studies during 1960 to 1971 in Zambia showed that finger millet respond well to ammonium sulphate at the rate of 200 kg/ha or, more preferably, in the form of top dressing applied six weeks after planting. The response to phosphorus, in the form of single superphosphate, was less marked and gave significant results only on virgin land which had previously received no fertilizer. The residual response to phosphorus was good when finger millet followed fertilized groundnut or soybean (Sarmezey, 1978).

Dhlwayo and Whingwiri (1984) studied the nitrogen and phosphorus response to finger millet at Makoholi Experiment Station of Zimbabwe. The responses of the crop to different nitrogen levels suggest 100 kg N/ha as the optimum level during 1980-1981 season. Inadequate nitrogen can limit yield in finger millet through a reduction in number of heads/m². This study also suggested that where the soils had moderate level of phosphorus, no fertilizer response was observed.

Seeding experiments

A factorial trial conducted at Baka, Karonga, in Malawi showed December sowing to be superior to February sowings; drilling on 45 cm row on the flat was superior either to broadcasting on the flat or to sowing two rows of hills on ridges 90 cm apart (Nyasaland, D.A. 1960).

Spacing and drilling experiments demonstrated that broadcasting was not the best or only method, as weed control and harvesting were easier to manage with drilled crop (Sarmezey, 1978).

Weeding and tillage practices

Finger millet is very labour-intensive at weeding time. The common practice of hand weeding in broadcast crops is time consuming and it is often difficult to distinguish rapoko grass (E. africana) from finger millet in the early growth stages (Howden, 1965). The crop cannot stand much weed competition in the early stages of growth.

Few generalizations can be made about tillage practices, planting patterns or land use patterns. Ploughing with animal traction, particularly oxen, is almost universally used in some countries such as Botswana, Lesotho and Swaziland, while hand tillage continues in some or most of the farming systems in the other SADCC countries. The majority of farmers plant crop mixtures but sole cropping has become more common in Swaziland and Lesotho. Historically important shifting cultivation and land use systems such as the Chitmene ash based system have given way to other systems in SADCC countries (Norman et al., 1984).
PLANT PROTECTION

Diseases

Blast (*Pyricularia* sp.) has been recorded on finger millet in almost all regions where finger millet is grown. It is common in Uganda, and was particularly severe in very wet years such as 1961 and 1962 (Dunbar, 1969). The varieties Mozambique 359 was used as a source of resistance to *Pyricularia* in a programme to transfer its resistance to local Uganda strain (Uganda, D.A. 1958).

Phyllachora eleusinis Spet. has been reported from Uganda and Tanzania and causes tar spot on finger millet leaves (Small, 1922). *Cercospora fusimaculans* Atk. has been reported from Tanzania (Wallace and Wallace, 1947). *Gloeocercospora* sp. has caused severe blight of leaves in Malawi (Weihe, 1950).

Tar spot (*Phyllachora eleusines*) causes small, jet black, brown and slightly water-soaked spots or lesions which are irregularly distributed on both sides of the leaves. This disease usually appears late as the crop approaches maturity (Dunbar, 1969).

Striga

Striga hermonthica is an important pest of finger millet in east Africa. Control measures involve uprooting before seeding, crop rotation and the possible use of chemical herbicides.

Insects and animal pests: Common insects and pests are locusts and grasshoppers, stem borers and foliage caterpillars.

FOOD USES

Finger millet is frequently an important constituent in local beer making. Sometimes it is the major constituent, but frequently it is added to sorghum and other carbohydrate sources. The finger millet enzyme is reported to have a saccharifying power greater than the corresponding enzymes from sorghum or maize malt, but less than that of barley malt amylases (Patwardhan and Narayana, 1930).

In Africa, finger millet is mainly consumed either cooked as porridge or used in brewing (Dunbar, 1969). White finger millet is particularly well-suited for making porridge, with the dark brown grain colour preferred for making beer.

In much of central and southern Africa and India, finger millet is consumed as a thick porridge. It is called sadza in Zimbabwe, nsima in Malawi, ugali in Uganda or mudde or sankati in India. The porridge is prepared by adding the flour to boiling water with constant stirring to obtain the desired consistency. At times, dry cassava tubers are added to improve the texture of the porridge.
A fermented thin porridge called ambali is also consumed as food during lunch and breakfast. The flour is mixed with water. A small quantity of fermented flour is added as a starter and kept in a warm place for a day. This is then added to boiling water with constant stirring to obtain a porridge of free-flowing creamy consistency. It is cooled and eaten.

A particularly important feature in the humid tropics is the excellent keeping quality of finger millet grain which is the best of all the cereals.

As shown in Table 4, finger millet from Zimbabwe has a lower protein content than maize or the other tropical small grains. It is however, much richer in calcium than most of the other cereal grains (Johnson, 1968).

TABLE 4

Comparative analysis of Zimbabwe grains: percentage by weight

<table>
<thead>
<tr>
<th></th>
<th>Finger millet</th>
<th>Pearl millet</th>
<th>Sorghum</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>87.0</td>
<td>89.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>72.0</td>
<td>70.0</td>
<td>72.0</td>
<td>74.0</td>
</tr>
<tr>
<td>Crude protein</td>
<td>7.0</td>
<td>10.0</td>
<td>10.0</td>
<td>8.5</td>
</tr>
<tr>
<td>Fat</td>
<td>1.3</td>
<td>4.4</td>
<td>2.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Fibre</td>
<td>3.4</td>
<td>1.8</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Ash</td>
<td>4.0</td>
<td>2.6</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Digestible protein</td>
<td>5.5</td>
<td>8.0</td>
<td>7.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Total digestible nutrients</td>
<td>72.0</td>
<td>80.0</td>
<td>78.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Feed uses

In a feeding study made in Zimbabwe, finger millet was fed to fatten pigs in combination with maize (75 per cent millet + 25 per cent maize) or pollards (70 per cent millet + 30 per cent pollards) and compared with maize; pollard blend (60:40). The protein contents in the above feeds were 15.5, 18.4 and 17.2 per cent, respectively (Calder, 1960). When 25 per cent of maize was replaced by millet, there was a small improvement in efficiency of feed conversion over maize alone or maize + pollards. However, the millet + pollards combination was less efficiently used than maize alone.

Grinding

Grinding of finger millet is considerably simpler than that of maize or kafir corn. Water is not used and the grain is merely ground in the pestle and winnowed, or sometimes sifted, winnowed and reground. This process resulted in meal recovery of 80 per cent with 18 per cent ofals and 2 per cent waste. It should be pointed out that rapoko is used commonly for brewing and is not commonly ground to a meal to make thick porridge. It was reported that the extraction rate by traditional method of grinding was 80 per cent for finger
millet whereas it was poor for maize (55 per cent), sorghum (65 per cent) and pearl millet (75 per cent). Loss of vitamins (Thiamine and Riboflavin) was negligible for finger millet whereas it was up to 90 per cent in maize (Carr, 1961).

SUMMARY

Finger millet ranks fourth in area and production among cereals next to maize, sorghum, and pearl millet in SADCC countries. This is a poor man's crop and grown by small farmers. Very little research work has been carried out on this crop. Germplasm has been collected from Botswana, Zambia, Zimbabwe, Malawi, and parts of Tanzania. There is a need to collect germplasm from Mozambique, Angola and Tanzania. Finger millet is used as food known as sodza, and nsima (thick porridge). It is also used for brewing. The beer from finger millet is preferred over the beer made from sorghum, pearl millet and maize. The protein content of finger millet is inferior to many cereals such as maize, sorghum, pearl millet and wheat but it is very rich in ash and fibre content.

A systematic research programme for the improvement of finger millet for grain yield and quality was initiated in 1985 at Matopos (Zimbabwe) by SADCC/ICRISAT sorghum and millet improvement project. A total of 1285 germplasm accessions have been collected locally or introduced from elsewhere for evaluation at four to five locations in different SADCC countries during rainy season of 1986-87. The selected lines will be used in finger millet improvement programmes.

REFERENCES

Small Millets

INTRODUCTION

Uganda lies astride the equator, enclosed by latitudes 4° 12’ north and 1° 29’ south, longitudes 29° 34’ east and 35° 0’ west. Rainfall is bimodal and well distributed along the northern and northwestern shores of Lake Victoria. Away from the shore, northwards it becomes more monomodal with the peak coming in the month of June. Here, the annual rainfall varies between 120 and 180 cm and conditions are more of the equatorial type. Northeastwards the dry seasons are longer and much more severe. Over 80 per cent of the country lies between 900 and 1500 metres above sea level, with the daily temperature ranging between 30°C and 15°C.

Uganda is dominated by agriculture with over 80 per cent of the 15.3 million people involved in subsistence farming. The most important cereals are maize, finger millet and sorghum in that order. Other small millets such as foxtail, barnyard, kodo and teff are not grown at all. This paper therefore emphasises on finger millet as it is the only important small millet in Uganda agriculture.

IMPORTANCE

Finger millet occupies over 500,000 hectares annually and produces over 500,000 metric tonnes of grain. By area, the relative importance of finger millet, sorghum and bulrush millet are 55, 42 and 3 per cent respectively (Zake, 1985). The national production and area under finger millet, maize and sorghum for the years 1981-1985 are shown in Table 1. The figures for finger millet showed an upward trend in both area and grain production until 1983, and in 1985 the area declined to 312,000 ha. During the same period production also declined from 545,000 metric tonnes in 1983 to 210,000 metric tonnes in
TABLE 1

Area ('000 ha) and production ('000 metric tonnes) of major cereals in Uganda (1981-1985)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger millet</td>
<td>300</td>
<td>480</td>
<td>330</td>
<td>528</td>
<td>341</td>
<td>545</td>
<td>332</td>
<td>223</td>
<td>312</td>
<td>210</td>
</tr>
<tr>
<td>Maize</td>
<td>260</td>
<td>342</td>
<td>285</td>
<td>393</td>
<td>295</td>
<td>413</td>
<td>347</td>
<td>281</td>
<td>271</td>
<td>251</td>
</tr>
<tr>
<td>Sorghum</td>
<td>170</td>
<td>320</td>
<td>200</td>
<td>256</td>
<td>207</td>
<td>407</td>
<td>206</td>
<td>164</td>
<td>186</td>
<td>148</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Forestry, Uganda.
1985. Finger millet is the staple food for the Nilotic and the Nilo-Hamitic tribes of the interior plateau. It is an important item of diet for the Bantu people in the south and southwestern region and Sudanic tribes in the northwest on either side of the River Nile (Thomas, 1970). Because of its good storage ability and absence of major storage pests, finger millet is often kept aside as an insurance against famine, drought or lean periods.

The grain can easily be ground with simple tools (grinding stone) possessed by peasant farmers. The flour mixes well with dry cassava or sorghum to make excellent food ugali (stiff porridge). Finger millet is increasingly becoming a major cash crop. The grain can be sold directly for cash at local markets or shops soon after harvest or may be stored until the market conditions are favourable. Often grain is brewed and the beer is sold for cash. The grain may be used as a means of payment for labour wages either directly or in the form of beer or used in barter exchange for other commodities like meat, livestock or chicken.

Millet porridge is considered an important means of nutrition for expectant or breast-feeding mothers. The byproduct of millet beer is usually fed to chickens, pigs or goats. The use of finger millet straw as fodder in Uganda is not in vogue. Perhaps it is because there is always plenty of fresh grass available all the year round.

However, grazing in the field after harvesting finger millet is common, and with increasing pressure on land, the use of stalk as fodder needs to be investigated. There is a strong belief that direct grazing of stalks in the field causes abortion in cows, though reasons for this belief is not quite clear. In many parts the dry stalk is used as roofing material especially for storage structures.

DISTRIBUTION AND PRODUCTION STATISTICS

Finger millet is grown in almost all ecological areas of the country. Its distribution is closely related to the different tribal groups, their social history, background where they live, soil type, rainfall pattern, altitude and the yield potential of the varieties. On the basis of the above, five agricultural farming systems are identified.

1) The banana-coffee and banana-millet-cotton region

This is the fertile lake crescent area with high humidity throughout the year. It is difficult to dry the finger millet and there is no need to store reserve foodgrain as there is assured and continuous supply of fresh banana, maize and sweet potato. Therefore, finger millet is grown only in small patches for beer making. The crop becomes important between this area and the shorter grass area where rainfall is too low to support banana cultivation. This zone can be referred to as the banana-millet-cotton region.
2) The northern system

This is a system practised in the short grass or the millet areas of Acholi, Lango and West Nile districts. The soils here are more fertile and less heavily populated. The monomodal rainfall with a long dry season (December-February) makes finger millet the most favoured cereal. In West Nile, however, cassava tends to be more important. Throughout the district, finger millet is being progressively replaced by cassava though the former is still being extensively cultivated. Also in the northeast towards Karamoja where conditions are more severe and dry, finger millet gives way to sorghum and bulrush millet. This is mostly due to rainfall uncertainties and low soil fertility; with the proportion of each cereal varying in transitional areas from the pure finger millet stand to the pure sorghum or bulrush stand.

3) The eastern or teso system

This environment is found predominantly in the districts of Kumi, Soroti, parts of Tororo and Pallisa. It is characterized by light infertile soils, heavy bimodal rains and fairly prolonged dry season (December-March). Cattle care is an integral part of this system. Up to the mid-1970's cotton was the main cash crop. The situation has changed since then with finger millet and cassava becoming cash crops.

4) The mountain system

This region is similar to the banana-coffee region except for higher altitudes and more dense population. Finger millet is found in Kigezi and Rwenzori range in the south, and Mbale and Kapchorwa in the hills of Mount Elgon in the east. In Kigezi, sorghum has been substituted for finger millet. Factors responsible for this change may be high population increase and the need for more quantity of food even if less palatable, low rainfall, and probably falling soil fertility levels. Finger millet is grown in higher elevations in small plots year after year mainly for beer making. In Kigezi and the Rwenzori range, it occupies an important place and grains are used both for beer making and as food.

5) The pastoral system

This is a system which, since early 1960s was basically pastoral and agriculture was insignificant. The system is dominated by low and unreliable rains (70 cm/year) and extended dry season (November-April). Cattle farming is the most important occupation. The Suk and the Karamejong tribes in the east do cultivate sorghum, maize, bulrush mixtures in the drier parts and finger millet in the valleys and wetter areas of the west normally around permanent settlements. In Kabarole and Mbarara in the west, finger millet is grown in swamps and valley bottoms.

Finger millet area and production in different regions during the years 1981-1985 is given in Table 2. The data indicate the northern region as the
TABLE 2
Area and production of finger millet in different regions: 1981-1985

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (ha)</td>
<td>Production (t)</td>
<td>Area (ha)</td>
<td>Production (t)</td>
<td>Area (ha)</td>
</tr>
<tr>
<td>1. Banana, coffee, banana, millet and cotton</td>
<td>67341</td>
<td>109610</td>
<td>72652</td>
<td>88297</td>
<td>75007</td>
</tr>
<tr>
<td>2. Northern region</td>
<td>112786</td>
<td>194482</td>
<td>11184</td>
<td>261980</td>
<td>114793</td>
</tr>
<tr>
<td>3. Toso/Tororo region</td>
<td>70048</td>
<td>114621</td>
<td>67253</td>
<td>81737</td>
<td>69437</td>
</tr>
<tr>
<td>4. The montane region</td>
<td>22162</td>
<td>36296</td>
<td>49526</td>
<td>60226</td>
<td>51164</td>
</tr>
<tr>
<td>5. The pastoral region</td>
<td>21667</td>
<td>24265</td>
<td>29425</td>
<td>35762</td>
<td>30379</td>
</tr>
<tr>
<td>Total</td>
<td>299995</td>
<td>480001</td>
<td>330120</td>
<td>528007</td>
<td>340780</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Forestry, Uganda.
largest finger millet producer accounting for about 40 per cent of the total national grain production, followed by the eastern region with 21 per cent. Production in the banana-coffee and the mountain regions has tended to remain constant. This is attributed to population pressure and availability of other fresh foods. In the pastoral system, production showed a steady increase, because, as more nomads settle in permanent homes, agriculture assumes importance. In Figs. 1 and 2 production trends and area for finger millet, maize and sorghum for the period 1981-1985 are shown. Production of finger millet and maize increased steadily from 1981-1983. Production of all cereals dropped sharply in 1984 and continued to drop in 1985 most probably due to political instability, increased insecurity followed by wars. This drop is also experienced in area for these crops (Fig. 2). However, the Government’s commitment to increase grain production to meet the ever-increasing national demand is evident through its ten-year production projections from 1981 to 1990 (Fig. 3). As per these projections, the grain production by the year 1990 is expected to be 1.3, 1.2 and 0.92 million metric tonnes for finger millet, maize and sorghum respectively.
Local varieties

There are a number of well-known local varieties of finger millet grown throughout in different regions of Uganda. The most common ones in the northern region are: Odyera, Kalachol, Nalyongolyongo, Lawatmio, Embalasasa, Nyaracholi, Agwe and Adyela. In the western region: Kaguma, Mate, Kyomiguru, Omusara and Katomi are most common. In the eastern region Engeny, Okiring, Eding, Emiroit and Emoru are grown. Most of these varieties are identifiable at maturity by characters such as plant height, maturity period, panicle shape and size and grain colour. More than one type is often grown in the same plot. The recommended varieties like Engeny, Gulu E, Serere I and P 224 have not been largely adopted by the farmers due to the insufficient seed production and distribution system and poor extension service. However, the need for supply of improved seeds to farmers has been recognized at the station as well as at the national level (Zake, 1985). To help and solve these problems, “on the farm and adaptive research” programmes have been launched to understand the local farming systems, to assess the farmers’ readiness to adapt the new technology, and to find out the degree to which such a change will affect farmers technical, economic and social status.
Fig. 3. Production ('000 metric tonnes) projections for finger millet, maize and sorghum, 1981-1990.
GERMLASM RESOURCES

Uganda is regarded as the centre of origin of finger millet because of its long traditions of religious and other ceremonies connected with its cultivation (Hulse, Liang and Pearson, 1980). There is extensive variability in the local varieties and in their wild relatives. Generally all varieties grown in the country have exposed grains which are known by local vernacular names. Wild species *Eleusine indica* (L.) Gaertn. and *Eleusine africana* are common aggressive weeds; the latter being more aggressive because it matures, shed seeds and establishes seedlings much earlier than finger millet. The present finger millet and small millets germplasm activities at Serere includes efforts to assemble, characterize, evaluate, document, utilize, distribute and maintain the collections. Uptil the beginning for 1985, with the assistance of the International Board of Plant Genetic Resources (IBPGR); three collecting missions were conducted in Northern, Eastern and Western regions of Uganda. The existing finger millet and other small millets collection consists of materials as indicated in Table 3.

TABLE 3
Collections of small millets germplasm in Uganda

<table>
<thead>
<tr>
<th>Crop</th>
<th>Source</th>
<th>No. of accessions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger millet</td>
<td>Indigenous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastern</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Western</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>177</td>
<td>778</td>
</tr>
<tr>
<td>Exotic:</td>
<td>India</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kenya</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malawi</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nepal</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanzania</td>
<td>3</td>
<td>159</td>
</tr>
<tr>
<td>Total finger millet accessions</td>
<td></td>
<td></td>
<td>937</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Small millets</th>
<th>Seed source</th>
<th>No. of accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxtail millet</td>
<td>India</td>
<td>83</td>
</tr>
<tr>
<td>Common millet</td>
<td>India</td>
<td>93</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>India</td>
<td>84</td>
</tr>
<tr>
<td>Little millet</td>
<td>India</td>
<td>88</td>
</tr>
<tr>
<td>Total small millets</td>
<td></td>
<td>348</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Finger millet is the most important cereal in Uganda exceeding maize and sorghum both in area and production. It is the staple food for over 50 per cent of the country’s 15.3 million people and increasingly a major source of income.

It grows in all ecological areas of the country. Its preference for food is related to tribal and social groupings and ready available supply of other foods like banana, sweet potatoes, maize or cassava. The areas where finger millet can grow is also determined by rainfall and soils.

Much of the finger millet technologies have not been readily accepted because farmers do not consider them economical under the prevailing social conditions. On-the-farm and adaptive research approach have currently been introduced to help solve these problems.

Wider utilization of finger millet grains in livestock feeds, beer, biscuits and in making other finished products will help in widening its consumption and production. Its utility as fodder still needs to be investigated in Uganda.

BIBLIOGRAPHY

FINGER MILLET IMPROVEMENT IN UGANDA

Vincent Makumbi Zake and Bill Williams Khizzah

INTRODUCTION

Uganda is regarded as the centre of origin of finger millet Eleusine coracana (L.) Gaertn. This is indicated by the long tradition religious and other local ceremonies connected with its cultivation and utilization (Hulse et al., 1980). Finger millet has been grown in Uganda for over 5,000 years, and was probably introduced to India more than 3,000 years ago. Though found in many other tropical countries, it has gained little importance outside Africa and India. Its improvement in Uganda is perhaps as old as the crop itself. The practice, by farmers of selecting and preserving attractive panicles to form the next year's seeds, is the first step towards the improvement of the local varieties. This practice is still common (Khizzah, 1985; Jameson, 1970).

In 1965, serious breeding work was started at the Serere Research Station. Prior to 1965, breeders at Serere had introduced and tested several local varieties for yield, disease resistance and other desirable characteristics. Finger millet breeding was aimed at developing varieties with high yield, early maturity for marginal rainfall areas of the country, lodging resistance, blast and virus disease resistance, and good grain quality. There is still a great need in Uganda to increase the national finger millet grain production to meet the ever-growing food demands.

The broad objectives of the finger millet improvement programme are:

1) To develop varieties of finger millet that are resistant to pests and diseases, acceptable to farmers and give consistent and persistent high yields over a wide range of environments.

2) To continue to evaluate the performance and adaptability of improved entries screened from existing programmes in as many locations or environments as possible.
3) To study the biology and epidemiology of blast disease and develop effective blast resistant varieties for utilization in resistance breeding.

4) To assemble and establish a large finger millet germplasm and their wild relatives and populations from as many locations as possible particularly within Uganda.

5) To continue to select for lodging resistance.

6) To select for high yielding, early maturing varieties for low rainfall areas of the country.

EMASULATION AND HYBRIDIZATION TECHNIQUES

One of the problems of working with finger millet is the difficulty of making crosses. The traditional finger millet improvement through hybridization has only given modest increases in yield over local cultivars. The method used for emasculation is by hot water, which before 1974 was heated to 47°C and the heads immersed for ten minutes. In a recent modification the temperature has been increased to 52°C, and heads are immersed for only two-and-a-half minutes. Although this temperature gives a good pollen killing, seed set is low. Nonetheless one successful cross (F₁) gives several thousand seeds.

Hand pollination using special paper bags for collecting and dusting pollen on the female panicles is carried out between 7.00 and 9.00 a.m., four days after emasculation. Through traditional breeding methods, several white-seeded varieties were developed. These include WC 65 × Serere 1/1/78 and WC 65 × Engeny 1/1 which have given consistent satisfactory yields, though the yields are not significantly different than the best brown-seeded varieties, Engeny and Serere 1. Traditional breeding methods have been successful in producing varieties with stable, good yield across sites and years, yet no breakthrough in yield has been achieved. This may be due to lack of heterotic response or possibly limited genetic diversity. Single, double and triple hybrid crosses are usually done in the hybridization programme. However, due to the small amount of F₁ seed, no study has been possible to assess the heterotic response among hybrid crosses.

INDUCTION OF MALE STERILITY BY MUTATION BREEDING

An attempt to induce sterility by fast neutrons in several varieties of finger millet was made in 1971. Dosage rates of 2 Kr, 4 Kr, 6 Kr and 8 Kr were applied to each of the 32 varieties. No male sterility was identified in M₀ and M₁ generations (Mukuru et al., 1974). However, it was observed that Gulu E treated with 4 Kr, had ten plants which failed to set seed in M₁ generation. These plants were suspected to be carrying a male sterility gene. The anthers were observed to be small, almost white to very light yellow and were devoid of pollen and were incapable of dehiscing or shedding pollen.
During the following seasons, further studies were carried out by crossing the identified male sterile plants in Gulu E variety with other varieties. All Fi plants were fertile, however a segregation ratio of 3:1 fertile to sterile plants was not obtained in 10 crosses (Mukuru et al., 1975 and Mukuru et al., 1976). Studies indicate that while a ratio of 3:1 fertile to sterile could be obtained depending on the variety and season (Mukuru et al., 1974) and that while other ratios of 5:1, 2:1 and 1:1 fertile to sterile could also be obtained, the existing variation in male sterility expression was influenced by modifier genes and the environment (Zake et al., 1984). The male sterile trait has been introduced into more than four hundred lines. These have been pooled to form populations.

Okiror, Mukuru and Zake (1976) reported optimum seed set in male sterile plants if pollinated four days after flowering at 8 a.m. These authors reported significant differences in plant height and grain yield per plant between fertile and male sterile plants, but found no significant differences in tillering capacity and days to flower. Grain yield per plant for fertile was almost double that of sterile plants. Low seed set on sterile plants was attributed to insufficient pollen in the air at the time of optimum stigma receptivity, since pollination by hand resulted in good seed set. They further reported yield per plant to be significantly correlated with tillering capacity, days to flower and plant height for the fertile and male sterile plants in the population they studied. The results indicate that male sterility can reliably provide a mechanism to enforce outcrossing on a large scale and allow new selection schemes to sort out superior genotypes in finger millet. The hereditary control mechanisms of male sterility still need to be fully understood.

The use of genetic male sterility in finger millet has, to a great degree, enhanced outcrossing and widened the gene pool. In this connection four populations have been formed for early maturity, lodging resistance, pests and disease resistance and grain yield and agronomic performance per se. All populations were random mated for three seasons in isolation. For some populations, S1 and sibs have been tested. Direct selections from the population to form varieties has also been done to advantage. However, testing for genetic gain and genetic advance among cycles of the populations was not done for some years, as remnant seed was lost in some cycles of the populations. Nonetheless, testing of cycles in all populations was carried out last year. Due to late planting and poor performance it was thought best to repeat the trial this year. Fi crosses have also been made with known varieties and were yield tested with their parents for hybrid performance in 7 x 7 triple lattice design during the 1985 first rains. However due to poor performance, the trial has been repeated in 1986.
ONGOING RESEARCH HIGHLIGHTS

Early maturing finger millet

Early maturing finger millet varieties have high potential in areas of low and uncertain rainfall. They can also be grown during shorter, lighter second rains in certain parts of the country.

Attempts are being made to develop varieties with short maturity periods and high basal tillering capacities. Twenty-six early maturing populations were planted with 95 selections in 11×11 triple lattice design in a screening trial during first rains, 1985. The results are given in Table 1. Most varieties flowered under 70 days. Population derivatives P_2C_3G, and FAO 49380-012 flowered earlier than most entries and produced yields equal or greater than longer maturing recommended varieties. Several other early entries produced grain yields in excess of 25 q/ha.

TABLE 1
Grain yield (q/ha) and days to flower of early maturing finger millet screening trial grown at Serere 1st rains, 1985

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Days to flower</th>
<th>Yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2C_3G</td>
<td>55</td>
<td>24.0</td>
</tr>
<tr>
<td>IE 718</td>
<td>72</td>
<td>16.2</td>
</tr>
<tr>
<td>IE 673</td>
<td>62</td>
<td>18.5</td>
</tr>
<tr>
<td>IE 601</td>
<td>66</td>
<td>9.7</td>
</tr>
<tr>
<td>IE 42</td>
<td>63</td>
<td>23.0</td>
</tr>
<tr>
<td>IE 501</td>
<td>63</td>
<td>13.1</td>
</tr>
<tr>
<td>IE 84</td>
<td>78</td>
<td>12.5</td>
</tr>
<tr>
<td>P_1C_1P</td>
<td>71</td>
<td>19.3</td>
</tr>
<tr>
<td>IE 600</td>
<td>63</td>
<td>15.0</td>
</tr>
<tr>
<td>P_2C_3P</td>
<td>65</td>
<td>25.4</td>
</tr>
<tr>
<td>PR 1091</td>
<td>63</td>
<td>12.1</td>
</tr>
<tr>
<td>P_4C_4G</td>
<td>73</td>
<td>19.1</td>
</tr>
<tr>
<td>IE 8</td>
<td>64</td>
<td>15.2</td>
</tr>
<tr>
<td>P_4C_3P</td>
<td>68</td>
<td>23.4</td>
</tr>
<tr>
<td>IE 84</td>
<td>70</td>
<td>11.1</td>
</tr>
<tr>
<td>HR-231-1</td>
<td>71</td>
<td>15.4</td>
</tr>
<tr>
<td>KM-1</td>
<td>62</td>
<td>21.3</td>
</tr>
<tr>
<td>P_1C_3G</td>
<td>68</td>
<td>23.8</td>
</tr>
<tr>
<td>IE 909</td>
<td>63</td>
<td>17.4</td>
</tr>
<tr>
<td>TAH 657</td>
<td>71</td>
<td>20.5</td>
</tr>
<tr>
<td>U1</td>
<td>78</td>
<td>9.0</td>
</tr>
<tr>
<td>P_2C_5P</td>
<td>66</td>
<td>22.3</td>
</tr>
<tr>
<td>P_2C_6P</td>
<td>56</td>
<td>18.4</td>
</tr>
<tr>
<td>Gulu E</td>
<td>64</td>
<td>25.2</td>
</tr>
<tr>
<td>IE 43</td>
<td>61</td>
<td>10.7</td>
</tr>
<tr>
<td>IE 48</td>
<td>56</td>
<td>10.5</td>
</tr>
<tr>
<td>CO 11</td>
<td>71</td>
<td>15.5</td>
</tr>
<tr>
<td>Chiring</td>
<td>68</td>
<td>25.2</td>
</tr>
<tr>
<td>FAO D-005</td>
<td>70</td>
<td>13.5</td>
</tr>
<tr>
<td>EC 131784-J-098</td>
<td>65</td>
<td>3.1</td>
</tr>
<tr>
<td>Varieties</td>
<td>Days to flower</td>
<td>Yield (q/ha)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HRG 91 B</td>
<td>60</td>
<td>19.3</td>
</tr>
<tr>
<td>WC 707</td>
<td>65</td>
<td>15.8</td>
</tr>
<tr>
<td>P1C6P</td>
<td>71</td>
<td>26.9</td>
</tr>
<tr>
<td>IE 798</td>
<td>62</td>
<td>10.0</td>
</tr>
<tr>
<td>P2C6G</td>
<td>72</td>
<td>22.8</td>
</tr>
<tr>
<td>P2C1G</td>
<td>64</td>
<td>20.1</td>
</tr>
<tr>
<td>SAD 149</td>
<td>62</td>
<td>21.5</td>
</tr>
<tr>
<td>Serere Cross 10</td>
<td>68</td>
<td>30.5</td>
</tr>
<tr>
<td>IE 94</td>
<td>65</td>
<td>24.2</td>
</tr>
<tr>
<td>HP-B-7-6</td>
<td>75</td>
<td>21.9</td>
</tr>
<tr>
<td>P4C6G</td>
<td>71</td>
<td>16.8</td>
</tr>
<tr>
<td>IE 805</td>
<td>72</td>
<td>12.3</td>
</tr>
<tr>
<td>P2C6G</td>
<td>71</td>
<td>16.4</td>
</tr>
<tr>
<td>U 30</td>
<td>66</td>
<td>15.0</td>
</tr>
<tr>
<td>IE 596</td>
<td>62</td>
<td>20.3</td>
</tr>
<tr>
<td>P1C4P</td>
<td>71</td>
<td>22.6</td>
</tr>
<tr>
<td>IE 40</td>
<td>73</td>
<td>12.5</td>
</tr>
<tr>
<td>IE 46</td>
<td>61</td>
<td>12.5</td>
</tr>
<tr>
<td>EC 131783-034J</td>
<td>65</td>
<td>9.6</td>
</tr>
<tr>
<td>PES 19</td>
<td>64</td>
<td>14.4</td>
</tr>
<tr>
<td>IE 11</td>
<td>65</td>
<td>10.7</td>
</tr>
<tr>
<td>HPB-83-4</td>
<td>73</td>
<td>10.3</td>
</tr>
<tr>
<td>P670</td>
<td>63</td>
<td>12.3</td>
</tr>
<tr>
<td>IE 85</td>
<td>64</td>
<td>13.7</td>
</tr>
<tr>
<td>FAO 007</td>
<td>68</td>
<td>20.3</td>
</tr>
<tr>
<td>WC 445</td>
<td>68</td>
<td>27.9</td>
</tr>
<tr>
<td>IE 773</td>
<td>62</td>
<td>15.0</td>
</tr>
<tr>
<td>P 277</td>
<td>72</td>
<td>26.2</td>
</tr>
<tr>
<td>IE 413</td>
<td>65</td>
<td>21.5</td>
</tr>
<tr>
<td>IE 700</td>
<td>71</td>
<td>20.3</td>
</tr>
<tr>
<td>IE 588</td>
<td>62</td>
<td>8.2</td>
</tr>
<tr>
<td>FAO 008</td>
<td>69</td>
<td>23.2</td>
</tr>
<tr>
<td>WC 293</td>
<td>66</td>
<td>19.3</td>
</tr>
<tr>
<td>P3C4P</td>
<td>65</td>
<td>23.4</td>
</tr>
<tr>
<td>P 318</td>
<td>72</td>
<td>25.2</td>
</tr>
<tr>
<td>Serere-1</td>
<td>64</td>
<td>31.2</td>
</tr>
<tr>
<td>IE 580</td>
<td>71</td>
<td>10.3</td>
</tr>
<tr>
<td>IE 802</td>
<td>63</td>
<td>15.0</td>
</tr>
<tr>
<td>P2C6G</td>
<td>70</td>
<td>19.1</td>
</tr>
<tr>
<td>P 224</td>
<td>71</td>
<td>13.7</td>
</tr>
<tr>
<td>IE 602</td>
<td>62</td>
<td>11.7</td>
</tr>
<tr>
<td>Hamsa (red & white)</td>
<td>66</td>
<td>13.1</td>
</tr>
<tr>
<td>Eding</td>
<td>63</td>
<td>25.8</td>
</tr>
<tr>
<td>JNR-38-008</td>
<td>74</td>
<td>11.9</td>
</tr>
<tr>
<td>FAO 004</td>
<td>59</td>
<td>16.2</td>
</tr>
<tr>
<td>P251</td>
<td>68</td>
<td>32.0</td>
</tr>
<tr>
<td>IE 947</td>
<td>67</td>
<td>18.9</td>
</tr>
<tr>
<td>EC 132100</td>
<td>58</td>
<td>15.2</td>
</tr>
<tr>
<td>IE 672</td>
<td>67</td>
<td>18.2</td>
</tr>
</tbody>
</table>
Table 1 (contd.)

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Days to flower</th>
<th>Yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 710</td>
<td>58</td>
<td>11.3</td>
</tr>
<tr>
<td>IE 14</td>
<td>66</td>
<td>10.3</td>
</tr>
<tr>
<td>IE 91</td>
<td>71</td>
<td>13.0</td>
</tr>
<tr>
<td>UR-403</td>
<td>71</td>
<td>17.8</td>
</tr>
<tr>
<td>P3C4P</td>
<td>69</td>
<td>17.4</td>
</tr>
<tr>
<td>IE 7</td>
<td>62</td>
<td>12.1</td>
</tr>
<tr>
<td>IE 685</td>
<td>64</td>
<td>19.7</td>
</tr>
<tr>
<td>U 15</td>
<td>73</td>
<td>18.2</td>
</tr>
<tr>
<td>P3C3P</td>
<td>66</td>
<td>17.6</td>
</tr>
<tr>
<td>P3C3G</td>
<td>67</td>
<td>20.5</td>
</tr>
<tr>
<td>WC 274</td>
<td>71</td>
<td>17.2</td>
</tr>
<tr>
<td>IE 713</td>
<td>65</td>
<td>10.3</td>
</tr>
<tr>
<td>P2C4P</td>
<td>73</td>
<td>17.6</td>
</tr>
<tr>
<td>U 10</td>
<td>70</td>
<td>26.0</td>
</tr>
<tr>
<td>E-KEP-4</td>
<td>72</td>
<td>11.7</td>
</tr>
<tr>
<td>IE 740</td>
<td>68</td>
<td>10.3</td>
</tr>
<tr>
<td>P2C3P</td>
<td>70</td>
<td>21.7</td>
</tr>
<tr>
<td>Engeny</td>
<td>67</td>
<td>22.3</td>
</tr>
<tr>
<td>IE 97</td>
<td>60</td>
<td>13.3</td>
</tr>
<tr>
<td>IE 508</td>
<td>62</td>
<td>16.4</td>
</tr>
<tr>
<td>IE 900</td>
<td>67</td>
<td>17.8</td>
</tr>
<tr>
<td>PIC3G</td>
<td>67</td>
<td>22.8</td>
</tr>
<tr>
<td>KEP 9</td>
<td>71</td>
<td>9.0</td>
</tr>
<tr>
<td>Nuvuvali</td>
<td>64</td>
<td>12.1</td>
</tr>
<tr>
<td>IE 680</td>
<td>65</td>
<td>11.7</td>
</tr>
<tr>
<td>IE 593</td>
<td>62</td>
<td>11.7</td>
</tr>
<tr>
<td>FAO 49380-012</td>
<td>59</td>
<td>22.6</td>
</tr>
<tr>
<td>P1C2P</td>
<td>71</td>
<td>25.6</td>
</tr>
<tr>
<td>IE 13</td>
<td>63</td>
<td>12.5</td>
</tr>
<tr>
<td>CO-10</td>
<td>78</td>
<td>10.7</td>
</tr>
<tr>
<td>IE 170</td>
<td>72</td>
<td>22.8</td>
</tr>
<tr>
<td>P4C3P</td>
<td>67</td>
<td>5.7</td>
</tr>
<tr>
<td>P4C4P</td>
<td>66</td>
<td>14.8</td>
</tr>
<tr>
<td>P4C2G</td>
<td>72</td>
<td>13.7</td>
</tr>
<tr>
<td>PR 202</td>
<td>79</td>
<td>10.0</td>
</tr>
<tr>
<td>P3C4G</td>
<td>68</td>
<td>24.6</td>
</tr>
<tr>
<td>M-1-302</td>
<td>78</td>
<td>17.8</td>
</tr>
<tr>
<td>IE 946</td>
<td>67</td>
<td>18.9</td>
</tr>
<tr>
<td>IE 712</td>
<td>64</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Mean	67	17.2
L.S.D. (t 0.05)	10	8
C.V. %	10.8	46.6

Local Check: Serere 1, Gulu E, Engeny and P 224
Finger millet screening trial

Twenty-nine popular local varieties were compared with 71 selections from exotic introductions. The results reported in Table 2 indicate that farmers' varieties yield better than exotic introductions. More attention is to be focussed on the improvement of existing varieties in future.

TABLE 2

Grain yield (q/ha), plant height (cm) and days to flower of local varieties and exotic selections grown in 10 x 10 screening trial at Serere, first rains, 1985

<table>
<thead>
<tr>
<th>Entry name</th>
<th>q/ha</th>
<th>Days to flower</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 945</td>
<td>12.4</td>
<td>72</td>
<td>82.3</td>
</tr>
<tr>
<td>Lawatmio</td>
<td>15.2</td>
<td>68</td>
<td>96.0</td>
</tr>
<tr>
<td>FAO 4930-002</td>
<td>9.1</td>
<td>70</td>
<td>97.3</td>
</tr>
<tr>
<td>SE × 33 × Emiroit-P4</td>
<td>4.8</td>
<td>70</td>
<td>96.7</td>
</tr>
<tr>
<td>JNR-3-008</td>
<td>13.3</td>
<td>71</td>
<td>89.3</td>
</tr>
<tr>
<td>FAO 49380</td>
<td>9.1</td>
<td>61</td>
<td>88.7</td>
</tr>
<tr>
<td>UR-403</td>
<td>7.0</td>
<td>70</td>
<td>92.0</td>
</tr>
<tr>
<td>IE 782</td>
<td>13.3</td>
<td>66</td>
<td>91.0</td>
</tr>
<tr>
<td>Serere-1</td>
<td>12.4</td>
<td>65</td>
<td>89.3</td>
</tr>
<tr>
<td>Adiang</td>
<td>15.8</td>
<td>70</td>
<td>100.0</td>
</tr>
<tr>
<td>Gurbati</td>
<td>20.6</td>
<td>70</td>
<td>96.0</td>
</tr>
<tr>
<td>Hamsa</td>
<td>10.0</td>
<td>76</td>
<td>80.7</td>
</tr>
<tr>
<td>FAO 49373</td>
<td>12.1</td>
<td>68</td>
<td>99.3</td>
</tr>
<tr>
<td>T 249</td>
<td>21.8</td>
<td>70</td>
<td>93.7</td>
</tr>
<tr>
<td>FAO 49378</td>
<td>9.7</td>
<td>67</td>
<td>83.3</td>
</tr>
<tr>
<td>Lopus-1</td>
<td>10.6</td>
<td>77</td>
<td>113.7</td>
</tr>
<tr>
<td>SAD 167</td>
<td>8.8</td>
<td>63</td>
<td>104.7</td>
</tr>
<tr>
<td>FAO-J-29</td>
<td>16.7</td>
<td>68</td>
<td>100.3</td>
</tr>
<tr>
<td>IE 588</td>
<td>2.7</td>
<td>58</td>
<td>73.7</td>
</tr>
<tr>
<td>Oruga</td>
<td>21.8</td>
<td>71</td>
<td>103.3</td>
</tr>
<tr>
<td>SAD 149</td>
<td>9.4</td>
<td>63</td>
<td>94.0</td>
</tr>
<tr>
<td>HR 344</td>
<td>8.2</td>
<td>69</td>
<td>96.0</td>
</tr>
<tr>
<td>EC 131647</td>
<td>8.5</td>
<td>84</td>
<td>87.3</td>
</tr>
<tr>
<td>P 224</td>
<td>14.8</td>
<td>71</td>
<td>104.3</td>
</tr>
<tr>
<td>ADOKE</td>
<td>13.9</td>
<td>74</td>
<td>95.0</td>
</tr>
<tr>
<td>P 277</td>
<td>18.5</td>
<td>71</td>
<td>99.0</td>
</tr>
<tr>
<td>FAO 49385D</td>
<td>13.0</td>
<td>71</td>
<td>89.0</td>
</tr>
<tr>
<td>FAO-J-27</td>
<td>10.3</td>
<td>72</td>
<td>104.3</td>
</tr>
<tr>
<td>SE × 46 × 102</td>
<td>10.9</td>
<td>71</td>
<td>89.3</td>
</tr>
<tr>
<td>IE 1037</td>
<td>18.5</td>
<td>70</td>
<td>88.7</td>
</tr>
<tr>
<td>U 15</td>
<td>10.9</td>
<td>61</td>
<td>90.3</td>
</tr>
<tr>
<td>IE 911</td>
<td>7.6</td>
<td>69</td>
<td>93.7</td>
</tr>
<tr>
<td>Okirin</td>
<td>18.2</td>
<td>68</td>
<td>96.3</td>
</tr>
<tr>
<td>FAO 007</td>
<td>8.2</td>
<td>69</td>
<td>102.3</td>
</tr>
<tr>
<td>PR 1091</td>
<td>5.2</td>
<td>67</td>
<td>79.3</td>
</tr>
<tr>
<td>IE 894</td>
<td>10.9</td>
<td>69</td>
<td>88.3</td>
</tr>
<tr>
<td>Otuka</td>
<td>11.2</td>
<td>70</td>
<td>99.7</td>
</tr>
<tr>
<td>Entry name</td>
<td>q/ha</td>
<td>Days to flower</td>
<td>Height (cm)</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Lajok-okwero</td>
<td>21.5</td>
<td>73</td>
<td>100.0</td>
</tr>
<tr>
<td>EC 131785</td>
<td>3.6</td>
<td>73</td>
<td>75.3</td>
</tr>
<tr>
<td>IE 897</td>
<td>4.8</td>
<td>70</td>
<td>93.7</td>
</tr>
<tr>
<td>P 278</td>
<td>16.1</td>
<td>69</td>
<td>102.3</td>
</tr>
<tr>
<td>P 318</td>
<td>16.7</td>
<td>72</td>
<td>99.3</td>
</tr>
<tr>
<td>IE 904</td>
<td>14.8</td>
<td>69</td>
<td>99.7</td>
</tr>
<tr>
<td>Nalyongo luongo</td>
<td>7.9</td>
<td>83</td>
<td>82.0</td>
</tr>
<tr>
<td>FAO-J-31</td>
<td>9.4</td>
<td>73</td>
<td>87.3</td>
</tr>
<tr>
<td>Oyoke</td>
<td>16.6</td>
<td>71</td>
<td>110.3</td>
</tr>
<tr>
<td>EC 1316 48</td>
<td>12.4</td>
<td>71</td>
<td>78.3</td>
</tr>
<tr>
<td>FAO-J-30</td>
<td>6.1</td>
<td>70</td>
<td>95.0</td>
</tr>
<tr>
<td>FAO 009</td>
<td>3.9</td>
<td>74</td>
<td>97.7</td>
</tr>
<tr>
<td>P 251</td>
<td>19.1</td>
<td>67</td>
<td>102.7</td>
</tr>
<tr>
<td>FAO 386</td>
<td>17.0</td>
<td>70</td>
<td>99.7</td>
</tr>
<tr>
<td>FAO 0003 C</td>
<td>11.5</td>
<td>68</td>
<td>91.0</td>
</tr>
<tr>
<td>IE 90</td>
<td>7.3</td>
<td>76</td>
<td>91.7</td>
</tr>
<tr>
<td>P 283</td>
<td>10.0</td>
<td>61</td>
<td>96.7</td>
</tr>
<tr>
<td>Lawiliwili</td>
<td>14.2</td>
<td>69</td>
<td>100.3</td>
</tr>
<tr>
<td>FAO D 00/OC</td>
<td>4.5</td>
<td>70</td>
<td>89.3</td>
</tr>
<tr>
<td>OKE 110</td>
<td>16.1</td>
<td>64</td>
<td>89.7</td>
</tr>
<tr>
<td>Eding</td>
<td>13.6</td>
<td>60</td>
<td>85.3</td>
</tr>
<tr>
<td>Egeta</td>
<td>20.6</td>
<td>67</td>
<td>100.7</td>
</tr>
<tr>
<td>Palale</td>
<td>6.4</td>
<td>72</td>
<td>88.3</td>
</tr>
<tr>
<td>FAO 4937-002</td>
<td>6.7</td>
<td>69</td>
<td>93.0</td>
</tr>
<tr>
<td>FAO D 00C</td>
<td>7.0</td>
<td>73</td>
<td>87.3</td>
</tr>
<tr>
<td>Todyang</td>
<td>19.7</td>
<td>68</td>
<td>101.0</td>
</tr>
<tr>
<td>FAO-J-25</td>
<td>9.4</td>
<td>73</td>
<td>88.7</td>
</tr>
<tr>
<td>IE 714</td>
<td>14.5</td>
<td>71</td>
<td>99.7</td>
</tr>
<tr>
<td>Aremo</td>
<td>18.2</td>
<td>67</td>
<td>100.7</td>
</tr>
<tr>
<td>P 211</td>
<td>20.6</td>
<td>64</td>
<td>92.7</td>
</tr>
<tr>
<td>IE 982</td>
<td>13.9</td>
<td>64</td>
<td>88.7</td>
</tr>
<tr>
<td>Adex Okwok-1</td>
<td>20.3</td>
<td>73</td>
<td>94.3</td>
</tr>
<tr>
<td>Erute</td>
<td>13.6</td>
<td>68</td>
<td>94.0</td>
</tr>
<tr>
<td>IE 413</td>
<td>13.0</td>
<td>66</td>
<td>100.3</td>
</tr>
<tr>
<td>IE 927</td>
<td>13.0</td>
<td>74</td>
<td>85.0</td>
</tr>
<tr>
<td>IE 891</td>
<td>12.1</td>
<td>70</td>
<td>99.3</td>
</tr>
<tr>
<td>PES 1A</td>
<td>3.0</td>
<td>60</td>
<td>74.0</td>
</tr>
<tr>
<td>Pajimo</td>
<td>18.2</td>
<td>64</td>
<td>92.0</td>
</tr>
<tr>
<td>Lajok Petalo</td>
<td>19.2</td>
<td>70</td>
<td>105.7</td>
</tr>
<tr>
<td>FAO D 006C</td>
<td>16.1</td>
<td>66</td>
<td>98.0</td>
</tr>
<tr>
<td>Indaf 6</td>
<td>7.0</td>
<td>71</td>
<td>89.3</td>
</tr>
<tr>
<td>Awiye Apam</td>
<td>17.6</td>
<td>64</td>
<td>83.0</td>
</tr>
<tr>
<td>FAO 49375</td>
<td>13.3</td>
<td>69</td>
<td>91.7</td>
</tr>
<tr>
<td>FAO 49387</td>
<td>18.3</td>
<td>68</td>
<td>94.0</td>
</tr>
<tr>
<td>Okama</td>
<td>20.0</td>
<td>65</td>
<td>91.7</td>
</tr>
<tr>
<td>Gulu E</td>
<td>12.1</td>
<td>67</td>
<td>100.3</td>
</tr>
<tr>
<td>CO-10</td>
<td>4.0</td>
<td>77</td>
<td>88.7</td>
</tr>
</tbody>
</table>
Table 2 (contd.)

<table>
<thead>
<tr>
<th>Entry name</th>
<th>q/ha</th>
<th>Days to flower</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO-J-26</td>
<td>10.0</td>
<td>71</td>
<td>98.7</td>
</tr>
<tr>
<td>Engeny</td>
<td>14.5</td>
<td>66</td>
<td>92.7</td>
</tr>
<tr>
<td>FAO 49372</td>
<td>11.5</td>
<td>71</td>
<td>94.7</td>
</tr>
<tr>
<td>EC 131647</td>
<td>10.9</td>
<td>84</td>
<td>89.3</td>
</tr>
<tr>
<td>IE 902</td>
<td>6.1</td>
<td>74</td>
<td>91.7</td>
</tr>
<tr>
<td>Amola-1</td>
<td>12.4</td>
<td>67</td>
<td>101.7</td>
</tr>
<tr>
<td>Agang</td>
<td>9.1</td>
<td>73</td>
<td>102.0</td>
</tr>
<tr>
<td>FAO D 008C</td>
<td>11.2</td>
<td>70</td>
<td>98.7</td>
</tr>
<tr>
<td>FAO 005</td>
<td>5.8</td>
<td>69</td>
<td>104.7</td>
</tr>
<tr>
<td>Odyera</td>
<td>13.6</td>
<td>76</td>
<td>84.7</td>
</tr>
<tr>
<td>Lopus-2</td>
<td>20.0</td>
<td>74</td>
<td>92.0</td>
</tr>
<tr>
<td>Okuruwiye</td>
<td>18.8</td>
<td>68</td>
<td>95.7</td>
</tr>
<tr>
<td>IE 945</td>
<td>7.0</td>
<td>68</td>
<td>86.0</td>
</tr>
<tr>
<td>U 10</td>
<td>14.2</td>
<td>65</td>
<td>87.3</td>
</tr>
<tr>
<td>Indaf 5</td>
<td>10.9</td>
<td>76</td>
<td>78.3</td>
</tr>
<tr>
<td>FAO 49389</td>
<td>11.8</td>
<td>67</td>
<td>103.0</td>
</tr>
<tr>
<td>Mean</td>
<td>12.4</td>
<td>69</td>
<td>93.7</td>
</tr>
<tr>
<td>L.S.D. (P = 0.005)</td>
<td>0.27</td>
<td>3.5</td>
<td>14.7</td>
</tr>
<tr>
<td>C.V. %</td>
<td>53.7</td>
<td>7.0</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Local Check: Serere 1, P 22, Gulu E, and Engeny

District variety trials

To develop varieties to suit the farmers' environment, the Department of Agriculture has divided Uganda into eleven agricultural zones, determined on rain seasons, amount of rainfall per annum, altitude, soils and the basic agricultural and livestock management activities in such areas. In these zones, 64 district variety trial centres covering all districts, are established. The centres, which are run by Variety Trial Officers, are used for screening breeders materials, testing of new technology, and serve as demonstration sites for farmers. The use of these centres is open to all, including Makerere University staff and private organizations. The finger millet programme makes use of the multilocational testing sites to identify suitable varieties for farmers.

The summary of the performance of some of the entries tested in these centres is indicated in Table 3. It will be observed that Serere cross 10, P 277 and U 10 are identified to be doing considerably well compared to the recommended varieties, Engeny, Serere 1 and Gulu E. The mean yield across sites of Serere cross 10 exceeded 50 q/ha. Most entries screened had satisfactory levels of resistance to neck blast and lodging.
TABLE 3
Mean grain yields in (q/ha) of 1983, 1984 and 1985 finger millet variety trials grown at locations in Uganda during first rains

<table>
<thead>
<tr>
<th>Entry</th>
<th>1983</th>
<th>1984</th>
<th>1985</th>
<th>Mean</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serere Cross 10</td>
<td>28.8</td>
<td>37.9</td>
<td>20.4</td>
<td>29.0</td>
<td>1</td>
</tr>
<tr>
<td>P 211</td>
<td>24.4</td>
<td>31.2</td>
<td>21.1</td>
<td>25.6</td>
<td>8</td>
</tr>
<tr>
<td>P 244</td>
<td>24.8</td>
<td>32.0</td>
<td>20.2</td>
<td>25.6</td>
<td>8</td>
</tr>
<tr>
<td>P 318</td>
<td>26.8</td>
<td>33.7</td>
<td>17.6</td>
<td>26.0</td>
<td>7</td>
</tr>
<tr>
<td>Eding</td>
<td>24.4</td>
<td>32.0</td>
<td>19.9</td>
<td>25.4</td>
<td>11</td>
</tr>
<tr>
<td>P 251</td>
<td>26.6</td>
<td>29.5</td>
<td>18.1</td>
<td>24.7</td>
<td>13</td>
</tr>
<tr>
<td>P 231</td>
<td>23.9</td>
<td>32.0</td>
<td>19.5</td>
<td>25.1</td>
<td>12</td>
</tr>
<tr>
<td>U 10</td>
<td>28.8</td>
<td>35.4</td>
<td>17.6</td>
<td>27.3</td>
<td>3</td>
</tr>
<tr>
<td>Serere 1</td>
<td>23.7</td>
<td>32.8</td>
<td>20.1</td>
<td>25.5</td>
<td>10</td>
</tr>
<tr>
<td>Gulu E</td>
<td>24.6</td>
<td>35.4</td>
<td>19.9</td>
<td>26.6</td>
<td>4</td>
</tr>
<tr>
<td>P 277</td>
<td>26.1</td>
<td>37.2</td>
<td>20.4</td>
<td>27.9</td>
<td>2</td>
</tr>
<tr>
<td>P 278</td>
<td>24.6</td>
<td>36.2</td>
<td>18.9</td>
<td>26.6</td>
<td>4</td>
</tr>
<tr>
<td>P 249</td>
<td>26.6</td>
<td>33.7</td>
<td>19.2</td>
<td>26.5</td>
<td>6</td>
</tr>
<tr>
<td>Engeny</td>
<td>22.3</td>
<td>28.6</td>
<td>19.3</td>
<td>23.4</td>
<td>14</td>
</tr>
</tbody>
</table>

Mean

<table>
<thead>
<tr>
<th>Range of sites mean</th>
<th>10-30</th>
<th>17-40</th>
<th>8-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of entries</td>
<td>36</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td>No. of sites</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Improved finger millet varieties

Despite considerable difficulties experienced as a result of the collapse of the former East African Community in 1977, the loss of breeding materials due to breakdown of cold storage, the departure of a number of expatriates; constant political unrest, lack of fuel transport and finance, poor management of the district variety trial centres to mention just a few; the finger millet breeding programme has progressed fairly well. Four varieties—Gulu E, Engeny, Serere 1 and P 224 have been released to farmers.

Over twenty varieties including eight crosses have consistently outyielded these recommended varieties, and thus offer bright prospects for release, for the benefit of the farmers. Seed of improved varieties is provided to farmers directly on a limited scale, or through the newly established Adaptive Development Project. Seed is also supplied through the Uganda Seed Project which multiplies, certifies, stores and distributes through Cooperative Unions.

IMPORTANCE, GENETIC RESOURCES AND BREEDING OF SMALL MILLETS IN KENYA

C. Mburu

INTRODUCTION

In Kenya, the millets of importance are Sorghum (Sorghum bicolor), finger millet (Eleusine coracana) and pearl millet (Pennisetum typhoides). Foxtail millet (Setaria italica) and proso millet (Panicum miliaceum) are of less importance.

Historical and archeological studies suggest that the early civilization in Eastern Africa depended heavily on sorghum and millets. Explosive expansion of the ‘Bantu’ in east, central and southern Africa must have depended substantially on crops like sorghum and millets adapted to the hot, low lying plains of this vast part of the African continent. With colonial incursions into Africa, the role of these crops began to change as new crops were introduced by explorers and settlers.

Though maize was introduced to the east coast of Africa as early as the fifteenth century, it did not assume importance until after the First World War, when active colonization of this region began. Maize, being less prone to bird damage, replaced sorghum and millets in their own native home of origin, the northeastern quadrant of Africa, where the greatest variability of both cultivated and wild forms of these crops exist. Available evidence shows that it is from here these crops originated and subsequently have spread to other parts of the continent and the world. The highlands of Ethiopia which form a linkage between the Middle East and Africa, are favoured as the centre for the ennoblement of indigenous crops. Apart from bird damage, requirement in millet cultivation, changes in religious practices and other activities also brought progressive decline in the production of millets.

Maize established first in the areas of the Rift valley and western Kenya, and became a widely cultivated field crop in vast farming areas. It rapidly became the favourite staple food in western Kenya. Wheat, rice and industrial
crops also replaced sorghum and millets in some other parts of Kenya. However, most of the area previously under sorghum and millets was taken by maize. Nevertheless, maize has not entirely replaced sorghum and millets. Finger millet has been a close associate of sorghum in waterlogged and striga-infested areas of Lake Victoria in western Kenya, bordering Uganda and to a lesser extent in the marginal rainfall areas (600 mm) of the eastern province of Kenya. Finger millet, due to its small seed size and storability without storage pests, has played an important role traditionally as a reserve crop. The small seed size of finger millet is advantageous as seeds dry faster compared to other cereals thus making it favourable in the hot, wet and humid areas of the Lake Victoria basin.

Pearl millet, being suited to hot, dry weather of medium and low altitudes, is mainly grown in the eastern parts of Kenya. Owing to its vulnerability to bird damage, the crop is cultivated to a limited extent. In fact its decline in Kenya in terms of area is more pronounced than that of sorghum and finger millet. Three other millets which deserve mention are proso millet, foxtail millet and teff. They are crops of less significance and minor importance in Kenya.

PRODUCTION TRENDS

As mentioned already only, two millet crops are important in Kenya, finger millet and pearl millet. Pearl millet is important in the eastern side, while finger millet though grown in several parts, is predominantly cultivated in the western parts around Lake Victoria extending up to Uganda in the west and in parts of the Rift Valley in the east. It is difficult to give precise estimates of the area under these crops as they are grown in patches and in mixed stands. In eastern Kenya including the coast the estimated area is 33,000 ha under finger millet and 40,000 ha under pearl and other millets. The western sector of the country, i.e., the Western Province, Nyanza Province and parts of Rift valley, the estimated area for finger millet alone is around 35,000 ha. Table 1 shows area and production of millets in different provinces of Kenya. The figures do not indicate any particular trend either increase or decrease in hectarage and production for the given years. However, compared to earlier years, there is a distinct reduction in area and production of millets due to replacement of area by other crops especially maize and wheat. Cereal crops projections in terms of area and production for the years 1982-85 are given in Table 2.

Realizing the importance of millets, the Government of Kenya started a project for the improvement of millets including finger millet. The objective is to develop suitable cultivars and agronomic packages for the following problem areas where finger millet is predominantly grown.

1) Waterlogged and striga-stricken areas around Lake Victoria.
2) The hot, dry, medium and low altitude areas of the Eastern Province, and
3) The coastal strip and cold highlands of the Rift Valley region.
TABLE 1
Millet area (ha) and production (tonnes) in different provinces of Kenya during 1980-85

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Western</td>
<td>Kakamega</td>
<td>2722</td>
<td>-</td>
<td>2622</td>
<td>-</td>
<td>1032</td>
<td>-</td>
<td>941</td>
<td>747</td>
<td>980</td>
<td>838</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bungoma</td>
<td>2736</td>
<td>-</td>
<td>2802</td>
<td>-</td>
<td>2385</td>
<td>-</td>
<td>2400</td>
<td>2536</td>
<td>4185</td>
<td>2848</td>
<td>3117</td>
<td>2496</td>
</tr>
<tr>
<td></td>
<td>Busia</td>
<td>11620</td>
<td>-</td>
<td>11455</td>
<td>-</td>
<td>13540</td>
<td>-</td>
<td>*108320</td>
<td>*96355</td>
<td>*13120</td>
<td>8474</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17078</td>
<td>-</td>
<td>16879</td>
<td>-</td>
<td>16957</td>
<td>-</td>
<td>*111661</td>
<td>*99638</td>
<td>18285</td>
<td>12160</td>
<td>3117</td>
<td>2496</td>
</tr>
<tr>
<td>Eastern</td>
<td>Machakos</td>
<td>2100</td>
<td>1756</td>
<td>7433</td>
<td>6020</td>
<td>4859</td>
<td>3478</td>
<td>3894</td>
<td>4026</td>
<td>15500</td>
<td>14400</td>
<td>2000</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Kitui</td>
<td>20000</td>
<td>40000</td>
<td>-</td>
<td>-</td>
<td>50240</td>
<td>44725</td>
<td>22895</td>
<td>16410</td>
<td>22010</td>
<td>17043</td>
<td>29030</td>
<td>24934</td>
</tr>
<tr>
<td></td>
<td>Embu</td>
<td>8694</td>
<td>9699</td>
<td>-</td>
<td>-</td>
<td>13374</td>
<td>12107</td>
<td>13800</td>
<td>12040</td>
<td>20200</td>
<td>18510</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Meru</td>
<td>8130</td>
<td>7860</td>
<td>-</td>
<td>-</td>
<td>8800</td>
<td>9544</td>
<td>10276</td>
<td>9473</td>
<td>9404</td>
<td>8854</td>
<td>21568</td>
<td>20475</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>38924</td>
<td>58315</td>
<td>7433</td>
<td>6020</td>
<td>77273</td>
<td>69854</td>
<td>50865</td>
<td>41949</td>
<td>67114</td>
<td>58807</td>
<td>52598</td>
<td>45574</td>
</tr>
<tr>
<td>Rift Valley</td>
<td>Nakuru</td>
<td>200</td>
<td>240</td>
<td>92</td>
<td>184</td>
<td>75</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Baringo</td>
<td>1908</td>
<td>1218</td>
<td>1508</td>
<td>723</td>
<td>1464</td>
<td>703</td>
<td>1171</td>
<td>656</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Keyo</td>
<td>2500</td>
<td>1810</td>
<td>1158</td>
<td>1344</td>
<td>2099</td>
<td>1344</td>
<td>916</td>
<td>364</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Marakwet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kericho</td>
<td>2812</td>
<td>1792</td>
<td>4335</td>
<td>3468</td>
<td>1800</td>
<td>1440</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W/Pokot</td>
<td>550</td>
<td>352</td>
<td>1750</td>
<td>1400</td>
<td>1800</td>
<td>914</td>
<td>-</td>
<td>-</td>
<td>450</td>
<td>2880</td>
<td>93</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Nandi</td>
<td>-</td>
<td>256</td>
<td>102</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>20</td>
<td>150</td>
<td>60</td>
<td>160</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>T/Nzoi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35</td>
<td>68</td>
<td>36</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U/Gishu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nraok</td>
<td>-</td>
<td>150</td>
<td>132</td>
<td>206</td>
<td>131</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7970</td>
<td>5412</td>
<td>9249</td>
<td>7353</td>
<td>7444</td>
<td>4622</td>
<td>2172</td>
<td>1108</td>
<td>673</td>
<td>3013</td>
<td>253</td>
<td>170</td>
</tr>
</tbody>
</table>
Table 1 (contd.)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kisi</td>
<td></td>
<td>7496</td>
<td>5356</td>
<td>5791</td>
<td>3917</td>
<td>2386</td>
<td>1527</td>
<td></td>
<td></td>
<td>4330</td>
<td>2311</td>
</tr>
<tr>
<td>S/Nyanza</td>
<td></td>
<td>7130</td>
<td>5704</td>
<td>7381</td>
<td>4137</td>
<td>8034</td>
<td>1542</td>
<td>6417</td>
<td>4872</td>
<td>2882</td>
<td>2278</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14626</td>
<td>11060</td>
<td>13172</td>
<td>8054</td>
<td>10420</td>
<td>6669</td>
<td>6417</td>
<td>4872</td>
<td>7212</td>
<td>4589</td>
</tr>
<tr>
<td>Coast</td>
<td>Lamu</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T/Taveta</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kwale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td>26</td>
</tr>
<tr>
<td>Central</td>
<td>Murang'a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
<td>548</td>
</tr>
<tr>
<td></td>
<td>Kirinyaga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>194</td>
<td>158</td>
<td>129</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
<td>548</td>
<td>160</td>
</tr>
<tr>
<td>N/Eastern</td>
<td>Isiolo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mandera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>328</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Garissa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>1.5</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Wajir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.2</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>620.0</td>
<td>338.8</td>
</tr>
</tbody>
</table>

* Indicates exaggerated figures

Source: Ministry of Agriculture and Livestock Development, Kenya, Crop Production Division, Food Crops Branch.
<table>
<thead>
<tr>
<th>Crop</th>
<th>Area (ha)</th>
<th>Yield/ha</th>
<th>1981 (Estimated)</th>
<th>Total production</th>
<th>Annual growth rate (%)</th>
<th>Projected Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>1500.00</td>
<td>18 bags</td>
<td>27000</td>
<td>3.5</td>
<td>27845.0</td>
<td>28820</td>
</tr>
<tr>
<td>Wheat</td>
<td>134.30</td>
<td>20 "</td>
<td>2686</td>
<td>1.0</td>
<td>2726.3</td>
<td>2767.2</td>
</tr>
<tr>
<td>Triticale</td>
<td>10.0</td>
<td>22 "</td>
<td>220</td>
<td>7.6</td>
<td>440.0</td>
<td>473.4</td>
</tr>
<tr>
<td>Rice</td>
<td>12.2</td>
<td>25 "</td>
<td>305</td>
<td>7.6</td>
<td>328.2</td>
<td>353.1</td>
</tr>
<tr>
<td>Sorghum/millet</td>
<td>154.4</td>
<td>8 "</td>
<td>1315.2</td>
<td>4.7</td>
<td>1377.0</td>
<td>1441.7</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture and Livestock Development, Kenya, Crop Production Division, Food Crops Branch.
GERmplasm resources

Millets have been in cultivation in Kenya for a very long time. The country as mentioned above lies within the enclave of the origin and domestication of millets, which extends from the northeastern quadrant of Africa to the central and eastern parts of the continent. Naturally, the extent of variability present in local germplasm of finger millet and pearl millet is vast. In the West Agricultural Research Station (WARS) which is one of the main research stations for millet research, 1136 world collections of finger millet have been assembled and evaluated which included 125 local collections made during 1981 from Kenya.

Several germplasm collecting missions have been earlier undertaken by several foreigners, Van Arkel, Danton, Latham and Wood. No authentic records are available on year of collection, areas explored and nature of materials collected by these expeditionists. Millet collections totalled 11, 322, 7 and 120 respectively from these four missions.

In 1973, International Board for Plant Genetic Resources, funded a collection mission in collaboration with the Ministry of Agriculture, Government of Kenya and collected 602 sorghum, 263 finger millet and 48 pearl millet types. These were from western Nyanza, eastern and coastal provinces of Kenya.

In another collection mission to all the millet growing areas of the country, the team from Katumani Research Station, Eastern Kenya collected 185 pearl millet, 425 finger millet, 178 foxtail millet, 13 proso millet and three barnyard millet accessions. This station also introduced accessions from EAAFRO (Serere, Uganda), ICRISAT (India), USA, Ethiopia, India, CIMMYT (Mexico) and Botswana which included 1000 finger millet, 470 pearl millet, 625 foxtail millet, 193 proso millet, 29 barnyard millet and eight little millet. Part of these collections are still present in cold stores at Kitala in western Kenya, at Katumani in eastern Kenya and Maguga in Nairobi.

Finger millet collections from Kenya are found to show substantial variation for duration of maturity, plant height, tillering potential, panicle shape and size, grain colour, size, texture and threshability. *Eleusine indica* is often found in association with cultivated forms and the shattering types 'Shibras' invariably accompanied the local land races in their area of cultivation. From the above it is evident that there is a lot more to be collected and conserved in Kenya as regards millets particularly finger millet.
FINGER MILLET RESEARCH IN THE SOUTHERN HIGHLANDS OF TANZANIA

R.O.F. Mwambene

INTRODUCTION

Finger millet (*Eleusine coracana*) is grown in all regions of southern highlands of Tanzania, but is mainly concentrated in Sumbawanga and Nakani (Rukwa Region), Mbozi, Ileji and Mbeya (Mbeys Region) and to a lesser extent in Iringa and Ruvuma regions. It is grown for food, for home brewing to make light beer (Pombe), and as a cash crop. Its use for home-made light beer is now more important as most people have adopted maize as their staple food. While sorghum and millets are considered 'famine crops', among millets, finger millet is the most valuable cereal because of its good storability without any store pests and high nutritive value of grains.

Finger millet is grown under a shifting cultivation farming system, in which new land is cleared every year, burnt and ploughed using the hand hoe or oxen. Finger millet is then broadcast on a firm seed bed. Intercropping of finger millet is very common along with maize, sorghum, cassava, pumpkins, sunflower, sesame, etc. After the harvest of finger millet, the field is used for raising crops such as common beans, maize, sweet potato or groundnut for one or two years then left fallow for six to seven years. Finger millet cannot be grown continuously on the same field due to heavy weed infestation and soil fertility depletion.

Although sorghum and millets are given high priority in the semi-arid areas of central and western Tanzania, with the concentration of research work at Ilonga Agricultural Research Institute (TARO, ILONGA), finger millet has retained its importance in the southern highlands of Tanzania, especially in the Ufipa and Mbozi Plateau. Sorghum and millet improvement programme at Uyole, concentrated on finger millet since 1970-71, when the institute was...
established. The report in this paper covers the highlights of the work carried out from 1970-71 to 1978-79 when the programme was shelved. The main objectives of the programme were:

1) Sorghum and millets breeding aimed at augmenting germplasm and breeding varieties suitable to different ecological zones.

2) Sorghum and millets agronomy aimed at putting together packages of inputs and practices which the farmers can adopt to increase productivity.

While trying to relate these objectives in its totality for sorghum and millets improvement and solving production problems in the country, it was found necessary to run trials and nurseries at Uyole and its sub-stations representing different ecological zones of the southern highlands. Consequently the trials and nurseries have been operating at different sub-stations and regional centres in collaboration with the national sorghum and millets co-ordinator stationed at TARO, Ilomega. Uyole station mainly concentrated research on high altitude sorghum and finger millet.

VARIETAL DEVELOPMENT

Traditional finger millet growers and consumers in the southern highlands of Tanzania continue to grow local finger millet types, and prefer local cultivars for food and beer making than improved varieties. When the breeding programme was initiated much effort was directed to make new introductions from Serere, Uganda and to evaluate them in a wide range of environments. In these trials, locals somehow were not included particularly in the initial years of testing. The data pertaining to grain yields of the varieties included in the east African finger millet trial at three major locations of the southern highlands of Tanzania are given in Table 1.

GENETIC RESOURCES

A field survey carried out in Ufipa plateau by a team of biologists and social scientists from Uyole, found finger millet to rank a high priority with the local farmers. This triggered a local finger millet collection and evaluation project by the plant breeding and genetics department. Preliminary evaluation of local finger millet collections at Uyole has shown that the southern highlands are rich in finger millet germplasm and the variability existing is large in each locality visited. The high altitude types of finger millet are quite productive, yielding up to 5 tonnes/ha. Having observed a lot of variability among local land races, a research programme was initiated at Uyole in 1976. This programme aimed at establishing local finger millet collections, describing their botanical characteristics, studying chemical composition of seeds and evaluating their yield potential and other agronomic characteristics. In two seasons, quite large collections were assembled and some promising varieties were identified (Table 2).
TABLE 1
Mean grain yield (kg/ha) in three major finger millet production areas of the southern highlands of Tanzania

<table>
<thead>
<tr>
<th>Locations</th>
<th>Uyole (Mbeya) 1800 m</th>
<th>Mbimba (Mbozi) 1500 m</th>
<th>Nkundi (Sumbawanga) 1810 m</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mbeya local</td>
<td>4,894</td>
<td>4,061</td>
<td>3,774</td>
<td>4,233</td>
</tr>
<tr>
<td>Sumbawanga</td>
<td>3,644</td>
<td>3,125</td>
<td>3,000</td>
<td>3,256</td>
</tr>
<tr>
<td>Engenyi</td>
<td>2,383</td>
<td>2,744</td>
<td>2,184</td>
<td>2,437</td>
</tr>
<tr>
<td>Serere local</td>
<td>2,328</td>
<td>2,500</td>
<td>2,151</td>
<td>2,326</td>
</tr>
<tr>
<td>P 283</td>
<td>2,283</td>
<td>2,467</td>
<td>2,130</td>
<td>2,293</td>
</tr>
<tr>
<td>P 224</td>
<td>1,939</td>
<td>2,847</td>
<td>2,195</td>
<td>2,327</td>
</tr>
<tr>
<td>Gulu E</td>
<td>1,856</td>
<td>2,153</td>
<td>1,762</td>
<td>1,924</td>
</tr>
<tr>
<td>Rombo Local</td>
<td>1,839</td>
<td>1,494</td>
<td>1,558</td>
<td>1,630</td>
</tr>
<tr>
<td>1/19</td>
<td>1,833</td>
<td>1,978</td>
<td>1,657</td>
<td>1,727</td>
</tr>
<tr>
<td>Eding</td>
<td>1,672</td>
<td>3,161</td>
<td>2,025</td>
<td>2,286</td>
</tr>
<tr>
<td>Mean</td>
<td>2,467</td>
<td>2,653</td>
<td>2,241</td>
<td>------</td>
</tr>
</tbody>
</table>

TABLE 2
Yield of local finger millet varieties, tested at Uyole

<table>
<thead>
<tr>
<th>Variety name</th>
<th>Place collected</th>
<th>Place collected</th>
<th>1976-77</th>
<th>77-78</th>
<th>78-79</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikwelekwele</td>
<td>Sumbawanga</td>
<td></td>
<td>44.5</td>
<td>44.7</td>
<td>44.4</td>
<td>44.53</td>
</tr>
<tr>
<td>Makukuku</td>
<td></td>
<td></td>
<td>—</td>
<td>39.4</td>
<td>33.3</td>
<td>36.35</td>
</tr>
<tr>
<td>Mambwe</td>
<td></td>
<td></td>
<td>50.0</td>
<td>51.9</td>
<td>36.1</td>
<td>46.00</td>
</tr>
<tr>
<td>Nameka</td>
<td></td>
<td></td>
<td>46.0</td>
<td>44.7</td>
<td>38.9</td>
<td>43.20</td>
</tr>
<tr>
<td>Katila</td>
<td></td>
<td></td>
<td>48.0</td>
<td>30.8</td>
<td>41.7</td>
<td>40.17</td>
</tr>
<tr>
<td>Mawutila</td>
<td></td>
<td></td>
<td>42.5</td>
<td>35.1</td>
<td>30.6</td>
<td>36.07</td>
</tr>
<tr>
<td>Amakazi</td>
<td></td>
<td></td>
<td>50.0</td>
<td>35.0</td>
<td>38.9</td>
<td>41.30</td>
</tr>
<tr>
<td>Amimakalala</td>
<td></td>
<td></td>
<td>51.5</td>
<td>33.9</td>
<td>38.9</td>
<td>41.43</td>
</tr>
<tr>
<td>Kalala</td>
<td></td>
<td></td>
<td>60.0</td>
<td>42.2</td>
<td>41.7</td>
<td>47.97</td>
</tr>
<tr>
<td>Chiza</td>
<td></td>
<td></td>
<td>50.0</td>
<td>34.6</td>
<td>33.3</td>
<td>39.33</td>
</tr>
<tr>
<td>Chiminuka</td>
<td></td>
<td></td>
<td>68.0</td>
<td>34.4</td>
<td>36.1</td>
<td>46.17</td>
</tr>
<tr>
<td>Machenchete</td>
<td></td>
<td></td>
<td>57.0</td>
<td>41.4</td>
<td>30.6</td>
<td>43.00</td>
</tr>
<tr>
<td>Kawulunge</td>
<td></td>
<td></td>
<td>51.0</td>
<td>33.6</td>
<td>36.1</td>
<td>40.23</td>
</tr>
<tr>
<td>Intswe</td>
<td>Mbeya/Mbozi</td>
<td></td>
<td>47.0</td>
<td>48.1</td>
<td>19.4</td>
<td>38.17</td>
</tr>
<tr>
<td>Mbeya local</td>
<td></td>
<td></td>
<td>60.3</td>
<td>36.1</td>
<td>27.8</td>
<td>41.40</td>
</tr>
<tr>
<td>Tukuyu local</td>
<td>Tukuyu/Rungit</td>
<td></td>
<td>—</td>
<td>26.1</td>
<td>27.8</td>
<td>26.95</td>
</tr>
<tr>
<td>Mwanguuru</td>
<td>Kyela</td>
<td></td>
<td>45.5</td>
<td>36.1</td>
<td>30.6</td>
<td>37.40</td>
</tr>
<tr>
<td>Ntunkane</td>
<td></td>
<td></td>
<td>45.5</td>
<td>36.1</td>
<td>30.6</td>
<td>37.40</td>
</tr>
<tr>
<td>Usangu local</td>
<td>Usangu Plains</td>
<td></td>
<td>41.5</td>
<td>33.2</td>
<td>38.9</td>
<td>37.87</td>
</tr>
<tr>
<td>Sumbawanga local I</td>
<td>Sumbawanga</td>
<td></td>
<td>42.5</td>
<td>41.7</td>
<td>36.1</td>
<td>40.10</td>
</tr>
<tr>
<td>Sumbawanga local II</td>
<td></td>
<td></td>
<td>55.5</td>
<td>37.2</td>
<td>38.9</td>
<td>43.87</td>
</tr>
</tbody>
</table>
Table 3 presents data on chemical composition of some of the local finger millet and sorghum varieties grown in Tanzania. The data show a lower crude protein content in finger millet than in wheat. While wheat has high amount of pepsin soluble protein, most varieties of finger millet and sorghum show a low level. White seeded types one each in finger millet (Muwutila) and sorghum (White) relatively had low content of tannic acid, which is known to reduce solubility and digestibility of protein. The lysine content is 10-15 per cent lower in finger millet and 30-35 per cent lower in sorghum than in wheat. However, compared to wheat, finger millet has a very high calcium and sorghum has high iron content.
<table>
<thead>
<tr>
<th>Species and varieties</th>
<th>Fat %</th>
<th>Crude protein % (6.25 x N)</th>
<th>Pepsin HCI soluble protein %</th>
<th>Ca %</th>
<th>P %</th>
<th>Fe mg/kg</th>
<th>Tannic acid %</th>
<th>Amino acids (% of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lysine</td>
</tr>
<tr>
<td>Finger millet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chikwelekwele (Brown)</td>
<td>1.1</td>
<td>7.3</td>
<td>5.7</td>
<td>0.35</td>
<td>0.25</td>
<td>25</td>
<td>0.41</td>
<td>2.83</td>
</tr>
<tr>
<td>Makukulu (brown)</td>
<td>1.1</td>
<td>7.4</td>
<td>5.8</td>
<td>0.31</td>
<td>0.26</td>
<td>28</td>
<td>0.40</td>
<td>2.87</td>
</tr>
<tr>
<td>Amakazi (brown)</td>
<td>1.1</td>
<td>7.4</td>
<td>5.8</td>
<td>0.32</td>
<td>0.27</td>
<td>25</td>
<td>0.44</td>
<td>2.87</td>
</tr>
<tr>
<td>Mawutila (white)</td>
<td>1.1</td>
<td>8.5</td>
<td>7.0</td>
<td>0.36</td>
<td>0.30</td>
<td>28</td>
<td>0.25</td>
<td>2.54</td>
</tr>
<tr>
<td>Tukuyu local (black)</td>
<td>1.1</td>
<td>8.0</td>
<td>5.9</td>
<td>0.45</td>
<td>0.33</td>
<td>37</td>
<td>0.42</td>
<td>2.68</td>
</tr>
<tr>
<td>Sorghum (high altitude varieties)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep red types</td>
<td>1.0</td>
<td>10.4</td>
<td>5.1</td>
<td>0.022</td>
<td>0.33</td>
<td>59</td>
<td>1.23</td>
<td>1.99</td>
</tr>
<tr>
<td>White/brown types</td>
<td>1.0</td>
<td>10.7</td>
<td>6.8</td>
<td>0.030</td>
<td>0.38</td>
<td>140</td>
<td>1.33</td>
<td>2.19</td>
</tr>
<tr>
<td>White types</td>
<td>1.0</td>
<td>12.3</td>
<td>12.3</td>
<td>0.026</td>
<td>0.37</td>
<td>320</td>
<td>1.01</td>
<td>2.05</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tai</td>
<td>1.0</td>
<td>10.8</td>
<td>10.1</td>
<td>0.043</td>
<td>0.38</td>
<td>38</td>
<td>0.16</td>
<td>3.08</td>
</tr>
</tbody>
</table>
IMPORTANCE, GENETIC RESOURCES AND BREEDING OF SMALL MILLETS IN ZIMBABWE, WITH EMPHASIS ON FINGER MILLET

F.R. Muza

PRODUCTION TRENDS IN SMALL MILLETS

The important small millets in the world today are finger millet, barnyard millet, common millet, kodo millet and foxtail millet. In Zimbabwe the only important small millet is finger millet and is a traditional food crop. The other small millets are of less importance and some communal farmers collect these grains for food.

The areas of domestication of finger millet are the Highlands of east Africa stretching from Ethiopia to Uganda (Hilu and de Wet, 1976). Over 50 percent of the world production of finger millet comes mainly from central and southern Africa. In Zimbabwe, based on Agritex data, finger millet occupies the third largest area after maize and pearl millet covering about 200,000 hectares. Finger millet requires more rainfall than pearl millet, another important food crop, and is therefore grown in natural regions II (750-1,000 mm per annum) and III (650-800 mm per annum) (Fig. 1). In these regions, the finger millet crop faces competition from others, especially maize, because of the favourable rains. As a result finger millet is usually allocated to land of low fertility, thereby reducing its productivity. In these regions the crop is mainly grown in the communal areas, and low yield of 0.5 t/ha is common. Some commercial and semi-commercial farmers have also started growing finger millet, getting higher yields of over 2 t/ha.

In 1984, finger millet became a controlled crop commanding a good selling price of $300/tonne, thus comparing well with other grain crops (Table 2). This has resulted in significant increase in finger millet production (Table 1).
Fig. 1. Zimbabwe natural regions map—Finger millet growing regions.
F.R. Muza 163

TABLE 1
Production trends: finger millet

<table>
<thead>
<tr>
<th>Period</th>
<th>Area (ha)</th>
<th>Production ('000 tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s</td>
<td>100,000</td>
<td>45-50</td>
</tr>
<tr>
<td>1960s</td>
<td>110,000</td>
<td>50</td>
</tr>
<tr>
<td>1970s</td>
<td>150,000</td>
<td>70-75</td>
</tr>
<tr>
<td>1980-81</td>
<td>181,000</td>
<td>140-150</td>
</tr>
<tr>
<td>1986</td>
<td>200,000</td>
<td>-150</td>
</tr>
</tbody>
</table>

TABLE 2
Producers' price of agricultural commodities—1985-86

<table>
<thead>
<tr>
<th>Crop</th>
<th>Grade</th>
<th>Price ($/tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White maize</td>
<td>A</td>
<td>180</td>
</tr>
<tr>
<td>Yellow maize</td>
<td>A</td>
<td>153</td>
</tr>
<tr>
<td>Groundnut</td>
<td>A</td>
<td>750</td>
</tr>
<tr>
<td>Sorghum</td>
<td>A</td>
<td>180</td>
</tr>
<tr>
<td>Wheat</td>
<td>A</td>
<td>300</td>
</tr>
<tr>
<td>Sunflower</td>
<td>A</td>
<td>340</td>
</tr>
<tr>
<td>Soybean</td>
<td>B</td>
<td>340</td>
</tr>
<tr>
<td>Edible beans</td>
<td>B</td>
<td>450</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>A</td>
<td>250</td>
</tr>
<tr>
<td>Finger millet</td>
<td>A</td>
<td>300</td>
</tr>
<tr>
<td>Seed cotton</td>
<td>A</td>
<td>75c/kg</td>
</tr>
</tbody>
</table>

Source: Agritex data

GERMPLASM RESOURCES

Muza and Mushonga (1985) indicated that the use of primitive cultivars was a major factor for low yields in finger millet in Zimbabwe. Evolution of superior varieties will be witnessed if a wide genetic pool is available to work with. There has been a genetic erosion since finger millet became a cultivated crop in this region. This has been realized, and efforts are being made to preserve the germplasm of finger millet. As better varieties come in, the genes found in the primitive cultivars and land-races must be conserved.

In 1982, a germplasm collection trip was launched in Zimbabwe by the IBPGR, the Crop Breeding Institute (CBI) of the Department of Research and Specialist Services as well as ICRISAT scientists. A total of 286 cultivated and six wild and weedy accessions of finger millet were collected (Appa Rao and Mengesha, 1982). The samples differed in the form and shape of inflorescence—open with straight spikes, open with top-curved spikes or com
pact with in-curved spikes (Appa Rao and Mushonga, 1985). These samples have been evaluated and characterized. In 1985, another collection trip was organized by IBPGR/CBI and a further 182 accessions were collected (Appa Rao, Mushonga and Muza, 1986).

At Harare station in Zimbabwe, a long-term cold storage room has been constructed with IBPGR/FAO assistance for storage of seeds. There is more need for further exchange of material. The collections from Zimbabwe have also been sent to ICRISAT, IBPGR and Fort Collins in the U.S.A. There is free import and export of genetic material in Zimbabwe. Also, more collections still are to be made from the southern parts of the country, which have not been covered by the earlier two collection expeditions.

As for the other small millets, we look forward to International Institutes like IBPGR and ICRISAT to identify the promising sources of germplasm and to facilitate their introduction to countries like Zimbabwe. Although the potential of the other small millets in Zimbabwe is not so obvious, we think it is worthwhile and necessary to have the germplasm.

BREEDING AND VARIETAL IMPROVEMENT

Apart from the recent introductions of improved lines, not much breeding and varietal improvement work has been done in finger millet in Zimbabwe.

During 1968-69, Mushonga effected 64 single head selections of finger millet and they were grown in single progeny rows in a completely randomized block design. He observed that pure lines differ significantly in yield, threshing percentage, grain weight per head, seed size, maturity period and plant height. High yielding lines possessed high grain weight per head, high threshing percentage, high number of seeds per head and early maturity.

The work on varietal improvement was again resumed in 1980. Samples made in germplasm collection trips were evaluated in observation nurseries. From the 1982 collections, 30 genotypes were selected based on grain yield, maturity and panicle shape. These have been evaluated at different sites in Zimbabwe during 1984-85. Some lines have yielded well at some stations (Table 3).

More selections have been made from the accessions collected in 1985. For the 1986-87 season, the following breeding activities are planned.

1) Finger millet variety trial—30 entries to be evaluated at four sites in Zimbabwe. This trial will also include the INDAF varieties from India.
2) Finger millet Regional Cooperative Trial (FMRCT) with 16 entries.
3) Finger millet Regional Introduction Trial (FMRIT) with 800 entries.
4) Further evaluation of 1985 collections.
5) Crossing programme by adapting hot-water emasculation technique.

We look forward to directions from International Organizations for improve-
TABLE 3
Finger millet trial 1984-85

<table>
<thead>
<tr>
<th>Site</th>
<th>Gwebi</th>
<th>Makohob</th>
<th>Mtopos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 1488 m.</td>
<td>Alt. 1208 m</td>
<td>Alt. 1338 m</td>
<td>Variety mean</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Rainfall</td>
<td>Rainfall</td>
<td>750-1000 mm</td>
</tr>
<tr>
<td>750-1000 mm</td>
<td>650-800 mm</td>
<td>450-650 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain yield (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGR-367</td>
<td>4.4 3.0 2.4 3.30 1</td>
</tr>
<tr>
<td>" 54</td>
<td>3.8 2.8 1.8 2.79 2</td>
</tr>
<tr>
<td>" 164</td>
<td>4.4 2.2 1.6 2.72 3</td>
</tr>
<tr>
<td>" 316A</td>
<td>3.5 2.9 1.5 2.63 4</td>
</tr>
<tr>
<td>" 47</td>
<td>4.1 2.5 1.2 2.62 5</td>
</tr>
<tr>
<td>" 402</td>
<td>4.3 2.6 1.0 2.62 5</td>
</tr>
<tr>
<td>" 327</td>
<td>3.3 2.3 2.0 2.56 7</td>
</tr>
<tr>
<td>" 295</td>
<td>3.0 2.8 1.7 2.52 8</td>
</tr>
<tr>
<td>" 126</td>
<td>4.7 2.0 0.8 2.50 9</td>
</tr>
<tr>
<td>" 209B</td>
<td>3.6 2.3 1.5 2.48 10</td>
</tr>
<tr>
<td>" 389</td>
<td>3.9 2.0 1.5 2.47 11</td>
</tr>
<tr>
<td>" 316B</td>
<td>3.9 2.3 1.1 2.47 11</td>
</tr>
<tr>
<td>" 72</td>
<td>3.6 2.3 1.4 2.44 13</td>
</tr>
<tr>
<td>" 294</td>
<td>4.1 1.7 1.3 2.36 14</td>
</tr>
<tr>
<td>" 362</td>
<td>4.0 1.9 1.1 2.35 15</td>
</tr>
<tr>
<td>" 35</td>
<td>3.4 2.2 1.3 2.28 16</td>
</tr>
<tr>
<td>" 303</td>
<td>3.1 2.4 1.3 2.27 17</td>
</tr>
<tr>
<td>" 84</td>
<td>2.7 2.4 1.7 2.25 18</td>
</tr>
<tr>
<td>" 108</td>
<td>2.9 2.4 1.4 2.25 18</td>
</tr>
<tr>
<td>" 10</td>
<td>3.3 2.1 1.3 2.21 20</td>
</tr>
<tr>
<td>" 127</td>
<td>3.6 1.8 1.2 2.20 21</td>
</tr>
<tr>
<td>" 113</td>
<td>2.8 2.3 1.5 2.19 22</td>
</tr>
<tr>
<td>" 304</td>
<td>2.5 2.5 1.5 2.17 23</td>
</tr>
<tr>
<td>" 316</td>
<td>2.9 2.1 1.3 2.11 24</td>
</tr>
<tr>
<td>" 73</td>
<td>2.6 2.4 0.9 1.96 26</td>
</tr>
<tr>
<td>" 83</td>
<td>3.7 1.5 0.6 1.92 26</td>
</tr>
<tr>
<td>" 42</td>
<td>2.9 2.3 0.6 1.91 27</td>
</tr>
<tr>
<td>" 36</td>
<td>2.3 1.9 1.5 1.88 28</td>
</tr>
<tr>
<td>" 22</td>
<td>2.5 1.9 0.6 1.69 29</td>
</tr>
<tr>
<td>" 34</td>
<td>3.4 1.1 0.3 1.59 30</td>
</tr>
</tbody>
</table>

F. R. Muza 165

ment of the crop. If finger millet is pushed further into marginal areas due to competition from crops like maize, then varieties with water-stress resistance will be needed.
LITERATURE CITED

PRODUCTION TRENDS, GERMPLASM RESOURCES, BREEDING AND VARIETAL IMPROVEMENT OF SMALL MILLETS, WITH SPECIAL EMPHASIS ON TEFF IN ETHIOPIA

Seyfu Ketema

INTRODUCTION
In this paper eight millets are discussed. According to the information so far available five of them, Setaria italica, Panicum sumatrense, Echinochloa colona, Paspalum scrobiculatum and Digitaria exilis are not found in Ethiopia while the other three, Eragrostis tef, Eleusine coracana and Panicum miliaceum are known to exist in Ethiopia (Wolde Michael, 1977).

Teff (Eragrostis tef) is not only the dominant millet but also the most important cereal crop in Ethiopia. It is cultivated on over one million hectares annually while the other cereals including maize and wheat occupy less than a million hectares. Finger millet is a relatively minor crop, cultivated in less than 300,000 hectares annually (Table 1). There is no statistical data on the area and production of proso millet (Panicum miliaceum).

Both finger millet and proso millet play an insignificant role in the present day agriculture of Ethiopia and not much information is available as no extensive research is being carried out on these crops. Therefore, this paper essentially describes the work carried out on teff.

PRODUCTION TRENDS
The latest statistical figures presented in Table 1 show that both teff and finger millet area and production have not fluctuated drastically in the five years period 1979-83. The recently formulated food policy of Ethiopia places emphasis on
maize, wheat and sorghum. How this food policy is going to affect the production of teff and other cereals in Ethiopia still remains to be seen.

Several developing countries have to face the challenge of feeding their growing population as well as increasing their export earnings to finance developmental activities in other sectors of their economy. In order to meet this challenge among many other things they will have to push their agriculture into marginal areas. The marginal agricultural lands in Ethiopia include the vertisols which are waterlogged and lack drainage, the areas with moisture stress and infertile lands. All these can be put back to production through appropriate management practices by restoring fertility, providing drainage and irrigation. These are expensive operations and beyond the immediate reach of many countries. An alternative is to develop crops that can be produced under such adverse conditions. One such crop in Ethiopia is teff. Its popularity among farmers is because of the following reasons.

1) Teff withstands waterlogged and anoxic conditions better than maize, wheat and sorghum. Farmers grow teff on vertisols that have drainage problems, where maize, wheat or sorghum cannot be grown.

2) Teff withstands moisture stress better than maize or sorghum. In many areas, maize and sorghum are planted around April. If these crops wilt due to moisture stress, the farmer will replough the land by the end of July or beginning of August and resow with teff. Therefore, teff is a rescue crop surviving and growing on the remaining moisture in the season.

3) Teff grain is not attacked by weevils. This means reduced post harvest loss in storage. In moisture stress areas where more than one sowing is a common practice and in years of total failure of rains the farmers have to store seed for long periods. Under such situations teff seed is an ideal one since it has no store pests.
4) It can be grown in areas where frost is a problem.
5) Teff straw is preferred by cattle over any other cereal straw and is an important source of feed during the dry season.
6) Teff commands a higher price in the market than all other cereal grains.

These advantages have probably made teff as an indispensable crop in Ethiopia.

GERMLASM RESOURCES

The Plant Genetic Resources Centre of Ethiopia (PGRC/E) has the main responsibility for collecting and conserving germplasm of many crops. Their collections include 97 accessions of finger millet and 2175 teff accessions (Melaku, 1982). No collections of proso millet have been made, and only a few collections of finger millet are available at PGRC/E. However, this does not imply that there are no germplasm diversity of these crops in Ethiopia. It only implies that no organized collection of these crops has been so far made.

According to Vavilov, Ethiopia is the centre of origin for teff (Melaku Hail, 1966; Tadese, 1975). Although the exact date of its domestication is not known there is no doubt that teff is an ancient crop of Ethiopia (Costanza, 1974; Tadese, 1975). It is believed that teff domestication first took place somewhere in the northern highlands of Ethiopia. Unger in 1866 discovered teff seeds in the Pyramids of “Dassur’ built in 3349 B.C. and deduced that teff was grown in Egypt before the eighth century B.C. Tadese (1975) believes that teff could have been taken to Egypt via the Blue Nile by merchants or messengers.

Teff was introduced to other parts of the world by the Royal Botanic Gardens, Kew, which imported seed from Ethiopia in 1866 and distributed them to India, Australia, USA and South Africa. According to Tadase (1975), Burt Davy in 1916 introduced teff to California (USA), Malawi, Zaire, India, Sri Lanka, Australia, New Zealand and Argentina; Skyes in 1911, introduced it to Zimbabwe, Mozambique, Kenya, Uganda, Tanzania and Horuitz in 1940 to Palestine.

Teff is cultivated from sea level to 2,800 metres above sea level; on varying soils from waterlogged to well drained soils and in areas that have less than 300 mm to more than 1,000 mm, seasonal rainfall. No doubt this is a reflection of the wealth of diversity and the adaptability that teff possesses. Presently 2,175 accessions of teff have been collected and are maintained in Ethiopia. Nevertheless, these collections have not been systematically made and not yet fully characterized and evaluated. So, a proper strategy is still to be developed on systematic collection and conservation work.

Important variations in teff germplasm noted so far include variability for maturity period from 60 to 120 days; for plant height from 45 to 150 cm, and for culm thickness from 1.2 to 3.1 cm. A set of cultivars have been characterized and documented by Tadese (1975). Endeshaw (1978) believes that there are still many minor variations within these cultivars.
As in other crops, the recent drought in Ethiopia has caused a severe gene erosion of teff germplasm. I think the international community has the obligation to assist in the collection and conservation of teff germplasm, whose main source of diversity is found only in Ethiopia. This has to be done for the benefit of the present and future generations of mankind.

BREEDING AND VARIETAL IMPROVEMENT

Teff is a sexually propagated self-pollinated annual (Tareke, 1975; Tadese, 1975). It is an allotetraploid with $2n = 40$ chromosomes (Tareke, 1975; Endeshaw, 1978; Tareke, 1981).

At present, the grain yield of teff is about 0.8 tonnes per hectare for the landraces and 1.7 to 2.2 t/ha for the improved varieties on cultivators holdings and 2.2 to 2.8 t/ha in research farms. Improvement work on teff through plant breeding started only in the late 1950s (Asrat, 1965; Tareke, 1974). This clearly shows that the improvement work on teff is relatively recent.

Since teff is the staple food of Ethiopia, extensive research on it is conducted only in that country. Unlike maize or wheat, which are consumed worldwide the efforts of thousands of scientists are not available for the task of improving teff, and not much basic or applied research information is available on this crop.

The first efforts to improve teff are made through pure line selection from the landraces. The limitation of this approach was soon realized and in order to create variability through gene recombination, intraspecific hybridization was attempted. This was not successful as the floral biology of teff was not well understood.

As an alternative to hybridization, mutation breeding work was started in 1972 to create new variability. The major objective of this approach was to create short stemmed lodging resistant, high yielding varieties. Although this objective is not yet fully realized, the following results have been achieved:

1) The effect of physical mutagens—gamma and x-rays and the chemical mutagens—ethylmethyl sulphonate, and sodium azide have been studied. The results show that gamma ray treatments of 250 krads and above are lethal. 150 krads of gamma ray treatment is considered as appropriate but varieties show different responses even at this dose.

2) For x-ray treatments, doses of 100-130 krads and for EMS treatments 2.5-4.7 per cent concentrations appeared optimum.

Teff flowers open during the early morning hours between 6.45 a.m. and 7.45 a.m. and they have a brief pollination time. Tareke (1975) reported first successful, intraspecific crosses. This opened a new era in breeding research in teff. The hybridization technique is a cumbersome and delicate one, as it involves hand emasculation followed by hand pollination. Seyfu (1983) has recommended a procedure of hand emasculation and hybridization. A skilled
operator might dispense with hand emasculation by applying donor pollen before the anthers in the flower of the seed parent have dehisced. But selfing remains a high risk in this procedure.

The major objectives of the teff breeding programme are to develop lodging resistant varieties with high and stable yield adapted to various agroecological zones. To date many improved varieties have been developed (Table 2).

No one exactly knows how and why teff was domesticated in Ethiopia. However, the following facts may throw some light. It is speculated that the word teff was derived from the Arabic 'tahf', a name given to a similar wild plant used by semites in South Arabia in times of food scarcity (Rouk et al., 1963; Costanza, 1974; Tadese, 1975; Endeshaw, 1978). According to Endeshaw (1978) seeds of E. pilosa which is believed to be the ancestor of teff was collected as food by people in many parts of Africa other than Ethiopia in times of famine. This suggests that the domestication of teff might have started in times of food scarcity.

This speculation of teff's domestication and the fact that there are several land races cultivated in low rainfall areas at the present moment indicate that teff has the potential to develop as an useful crop for several moisture stress areas in many parts of the world.

LITERATURE CITED

Asrat, F. 1965. Cereal and oil seed research. Branch Experiment Station, Debre-Zeq, Agricultural Research Centre, Alemaya Agricultural University, Diré Dawa, Ethiopia. 60 pp.

TABLE 2
Improved varieties of Teff, their area of adaptation and some of their agronomic characters

<table>
<thead>
<tr>
<th>Variety</th>
<th>Altitude (m)</th>
<th>Rainfall in the growing season (mm)</th>
<th>Days to maturity</th>
<th>Yield (q/ha)</th>
<th>Year of release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In experimental station</td>
<td>In farmers field</td>
</tr>
<tr>
<td>DZ-01-787</td>
<td>1800-2500</td>
<td>400-700</td>
<td>90-130</td>
<td>18-29</td>
<td>17-22</td>
</tr>
<tr>
<td>DZ-Cr-82</td>
<td>1700-2000</td>
<td>300-700</td>
<td>112-119</td>
<td>15-20</td>
<td>17-21</td>
</tr>
<tr>
<td>DZ-Cr-44</td>
<td>1800-2400</td>
<td>400-600</td>
<td>125-140</td>
<td>21-30</td>
<td>17-22</td>
</tr>
</tbody>
</table>
IMPROVEMENT OF FINGER MILLET (*Eleusine coracana*) IN ETHIOPIA

Yilma Kebede and Abebe Menkir

INTRODUCTION

In Ethiopia, despite fluctuations between years and regions finger millet comprises about 5 per cent of the total cultivated area under cereals, and makes up a similar percentage of the total cereal production in the country (Table 1). The cultivation of finger millet is concentrated in the mid and lower altitude regions of Eritrea, Tigray, Gojjam, Gonder and Wellega. In these regions, finger millet constitutes 10 per cent to 20 per cent of the total cereal production. From an area of just over 220,000 ha less than 200,000 tons of finger millet is produced, resulting in a national average of below 1 ton/ha.

| TABLE 1 |
| Estimated production of major cereal crops in Ethiopia |

<table>
<thead>
<tr>
<th></th>
<th>1976/77</th>
<th>77/78</th>
<th>78/79</th>
<th>79/80</th>
<th>84/85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teff</td>
<td>994.5</td>
<td>1022.4</td>
<td>1083.8</td>
<td>1144.0</td>
<td>873.8</td>
</tr>
<tr>
<td>Barley</td>
<td>894.5</td>
<td>689.9</td>
<td>696.8</td>
<td>772.0</td>
<td>749.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>605.2</td>
<td>428.9</td>
<td>448.8</td>
<td>469.0</td>
<td>561.3</td>
</tr>
<tr>
<td>Maize</td>
<td>947.8</td>
<td>929.1</td>
<td>981.6</td>
<td>977.2</td>
<td>923.9</td>
</tr>
<tr>
<td>Sorghum</td>
<td>755.7</td>
<td>708.0</td>
<td>679.9</td>
<td>689.0</td>
<td>489.2</td>
</tr>
<tr>
<td>Millet</td>
<td>172.4</td>
<td>207.2</td>
<td>189.6</td>
<td>193.0</td>
<td>187.2</td>
</tr>
</tbody>
</table>

Finger millet is popular for making local beer and distilled spirit (Areki). The grain is also used for bread (injera), although other grains are more preferred for this purpose. In the major producing regions, it does relatively well in drier years and becomes a famine crop for farmers (Asrat, 1965).

The most important advantage of this crop is that the seed can be stored for a longer period without the use of insecticides. It is also considered to be free from the major pests and diseases, and unlike sorghum is not favoured by birds (Cloutier, 1984).

Millet Improvement—Historical Sketch

The earliest reported work on finger millet was from Debre Zeit experiment station, where preliminary results indicated that as a group, white seeded types had higher yields compared to red and dark seed types (Asrat, 1965).

Later on, the Ethiopian Sorghum Improvement Programme considered the possibility of introducing millets as alternate crops for moisture stress areas of the country. In 1979, sixty millet accessions, ten each of finger, proso, little, kodo, foxtail and barnyard millets were received from ICRISAT and evaluated at the research station at Melkassa (Nazareth). Many of these millets were not as early as expected. Only proso and foxtail appeared promising.

Another consignment of 247 foxtail millet and 35 barnyard millet accessions was received and evaluated in 1980. A trial consisting of some foxtail selections was carried out in subsequent years but the entries did not perform as expected.

Further Work

Recognizing the importance of finger millet as a potential dryland crop in the country, a programme was initiated in 1985, aimed at identifying high yielding, lodging and disease resistant lines for the major millet areas.

Finger millet is considered indigenous to Ethiopia (Huffnagel, 1961) and occupies diverse agro-ecological situations. There is a vast range of genetic variability in indigenous Ethiopian germplasm. Taking into account that assembly of the genetic resources and identification of important traits is essential for attaining breeding objectives, the Plant Genetic Resources Centre/Ethiopia has assembled over 700 accessions of finger millet both from indigenous and foreign locations. The majority of the indigenous collections are from Gojjam, Gonder and Wellega administrative districts. Characterization data indicated the range of variation in seedling vigour, days to maturity (102-163), number of fingers (6-11) and ears (16-72) length of fingers (5-14 cm) and plant height (40-142 cm) as well as seed color (light to dark).

So far, our research efforts have focused on isolating promising genotypes from indigenous collections grown at Melkassa and further evaluating them.
in possible areas of production. In conjunction with the Plant Genetic Resource Centre/Ethiopia, a total of 524 finger millet accessions were evaluated for various agronomic and morphologic characteristics in 1985 and 1986 (Table 2). Just under 50 per cent of the collections were indigenous. The rest were introduction from Zimbabwe, Burundi and Nepal. Out of these accessions, 44 early and 69 medium-late maturing types were selected and included in advanced observation nurseries (Table 3). Nurseries consisting of early maturing millets were grown and evaluated at low elevation locations (Melkassa, Miesso and Kobo). Medium-late maturing types were tested at intermediate (Pawe) and high (Adet) elevation sites. Based on agronomic excellence and adaptation as well as tolerance to lodging and head blast, some promising entries have been identified and included in variety trials.

TABLE 2
Selection from 1985 and 1986 grow outs of finger millet accessions planted at Melkassa

<table>
<thead>
<tr>
<th>Year</th>
<th>Total evaluated</th>
<th>Source</th>
<th>Accessions advanced</th>
<th>Per cent selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>186 IND.</td>
<td>40</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 INTRO.</td>
<td>22</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>63 IND.</td>
<td>36</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 INTRO.</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

IND — Indigenous
INTRO — Introduction

TABLE 3
Classification of 1985 and 1986 finger millet selections based on maturity and location for testing

<table>
<thead>
<tr>
<th>Days of maturity</th>
<th>1985</th>
<th>1986</th>
<th>Test location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td><110</td>
<td>29</td>
<td>15 MK, MI, KB</td>
</tr>
<tr>
<td>Interm.</td>
<td>110-130</td>
<td>17</td>
<td>36 PW, AD</td>
</tr>
<tr>
<td>Late</td>
<td>>130</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

MK — Melkassa, MI — Miesso, PW — Pawe, AD — Adet, KB — Kobo

In a finger millet preliminary variety trial grown at Melkassa and Kobo, yield levels averaged over locations varied from 1.5 to 3.4 tonnes/ha. About 50 per cent of the accessions produced yields of 2.5 tonnes/ha or better (Table 4). More variety and observation trials have been planned for low (Kobo, Miesso, Melkassa), intermediate (Pawe) and high (Adet) elevation testing sites during the coming season.
TABLE 4
Grain yield and days to flowering of selected finger millet entries (based on yield and earliness) from a preliminary variety trial grown at Melkassa (MK) and Kobo (KB), 1986

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Grain yield</th>
<th>Flowering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MK</td>
<td>KB</td>
</tr>
<tr>
<td></td>
<td>tons/ha</td>
<td></td>
</tr>
<tr>
<td>203253</td>
<td>1.8</td>
<td>4.9</td>
</tr>
<tr>
<td>203261</td>
<td>2.0</td>
<td>4.4</td>
</tr>
<tr>
<td>100008X</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>100007X</td>
<td>1.9</td>
<td>2.8</td>
</tr>
<tr>
<td>100058</td>
<td>1.4</td>
<td>3.3</td>
</tr>
<tr>
<td>76T1 = 23 +</td>
<td>1.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- X indigenous
- + early sorghum

CONCLUSION

Some progress has been made in the area of finger millet improvement in Ethiopia. Nevertheless, there is a lot to be done in identifying production constraints, refining recommendation domains, defining the requirements of the small farmers, and establishing several testing sites representing the major production zones. We are yet to initiate work on developing appropriate management systems and crop protection measures. Furthermore, work on nutritional characteristic of finger millet germplasm as well as for processing and utilization of the crop needs due attention.

LITERATURE CITED

IV

PHYSIOLOGY, CROPPING SYSTEMS, PRODUCTION TECHNOLOGY AND PESTS AND DISEASES IN ASIA
INTRODUCTION

Finger millet, a C₄ plant, is an important grain crop in the southern states of India. It has a high production potential reaching up to 40-50 quintals per hectare under optimum conditions. However, the yield levels achieved are far below its actual potential because finger millet is predominantly grown under rainfed conditions (Fig. 1). Drought stress severely limits the yield of finger millet although it is reputedly one of the most resistant crops to drought. Even short periods of drought, during some stages of growth markedly reduce the yield.

Although drought causes more yield losses than the combined effect of all other abiotic stress factors, the progress made in enhancing productivity in a water limiting environment has been unfortunately insignificant. The chief reason for this slow progress in ‘drought stress’ research is the complexity of the problem, since, the magnitude, duration and the time of occurrence of drought is unpredictable and often compounded by the variations in temperature and relative humidity.

However, during this decade significant progress has been made in understanding the nature of stress injury and the adaptive mechanisms associated with growth and survival. Field evaluation programmes have been refined and several quick screening techniques developed for rapid screening of a large number of germplasm material to identify specific characters associated with higher productivity under moisture stress. In this paper different physiological approaches to increase the productivity of finger millet under
moisture stress, are discussed. These approaches are based on our own results and also from studies conducted elsewhere.

In the first instance it is necessary to assess (1) the time, magnitude and duration of stress effect in a particular season, (2) the drought stress effect on growth as a constraint for productivity, (3) identifying the adaptive strategies of the plant for higher productivity under these conditions, and (4) the optimum growth period of the crop for maximum utilization of precipitation.

The rainfall distribution (Fig. 2) and water balance components of finger millet growing soils in Karnataka indicate that drought stress may occur either during early stages of growth or during mid-season i.e., during panicle development and anthesis. Analysis of the constraints in growth and productivity suggests that the following are the major factors.

i) Stress after sowing—Effect on seedling emergence and crop establishment

ii) Early season stress—Effect on early crop growth rate

iii) Mid-season stress —Effect on sink development and sink number.

GERMINATION AND SEEDLING SURVIVAL

Stress during germination and seedling establishment drastically affects crop stand and is often a major constraint especially in small millets with limited
seed reserves. Germination and establishment is often affected under semi-arid conditions, where the soil surface is wetted inadequately and the rate of evaporation is high. In such circumstances, the seedling must compete with the process of atmospheric drying, for the rapidly diminishing moisture of the surface layers. Often, these layers dry out too rapidly for the seed to germinate or for the germinated seedling to extend its roots down into the deeper layers where available moisture can be found. Consequently the seedling may fail to survive even though the overall ecological conditions may be favourable for a mature plant. This problem is further compounded by the formation of crust, the extent and severity of which predominantly depends on soil characteristics. Significant species variation and also variation amongst genotypes within a species do exist in relative germination rates under these situations.

Apart from the pre-sowing moisture conservation measures generally adopted and the intrinsic water holding capacities of soils, seed characteristics associated with seedling vigour may determine the final crop stand. One of them is the intrinsic ability of the seedling itself to maintain higher growth rates which is a good reflection of its vigour. This would directly encourage survival by faster emergence before severe depletion of soil moisture occurred or indirectly by better osmotic adjustment by accumulation 'osmotically active solutes'. High seedling growth rates under stress are also favoured by higher rate of imbibition and the metabolic activity of the seeds. The latter facilitates uptake of water especially under low soil water potentials. The survival of the germinated seed during the stress period and its regrowth on stress alleviation is another important factor which determines seedling establishment. Hydration and dehydration tolerance of the germinated seeds by osmotic adjustment, better hormonal regulation and utilization of seed reserves is important.

The seed characteristics associated with better establishment may be:

i) High rate of imbibition

ii) Higher metabolic activity leading to high growth rates

iii) Hydration—Dehydration tolerance of the germinated seeds.
In finger millet, we have observed significant differences amongst genotypes in the rate of water imbibition by the seeds and this was associated with higher growth rates of the seedlings even under stress (Table 1).

TABLE 1

Differences in imbibition of water in 15 genotypes of finger millet during a 12 hrs period (imbibition expressed in mg of water per gm seed)

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>2 hrs</th>
<th>4 hrs</th>
<th>8 hrs</th>
<th>12 hrs</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU 1</td>
<td>281</td>
<td>311</td>
<td>362</td>
<td>412</td>
<td>High</td>
</tr>
<tr>
<td>ELC 7</td>
<td>259</td>
<td>301</td>
<td>374</td>
<td>286</td>
<td>High</td>
</tr>
<tr>
<td>PPR 1753</td>
<td>315</td>
<td>432</td>
<td>453</td>
<td>425</td>
<td>High</td>
</tr>
<tr>
<td>ELC 4</td>
<td>306</td>
<td>336</td>
<td>422</td>
<td>429</td>
<td>High</td>
</tr>
<tr>
<td>PR 202</td>
<td>268</td>
<td>290</td>
<td>369</td>
<td>366</td>
<td>High</td>
</tr>
<tr>
<td>ELC 6</td>
<td>299</td>
<td>313</td>
<td>370</td>
<td>366</td>
<td>High</td>
</tr>
<tr>
<td>ELC 9</td>
<td>272</td>
<td>356</td>
<td>427</td>
<td>392</td>
<td>High</td>
</tr>
<tr>
<td>GPU 10</td>
<td>218</td>
<td>244</td>
<td>331</td>
<td>413</td>
<td>High</td>
</tr>
<tr>
<td>RAU 10</td>
<td>167</td>
<td>165</td>
<td>359</td>
<td>279</td>
<td>Low</td>
</tr>
<tr>
<td>PES 83-2</td>
<td>125</td>
<td>157</td>
<td>248</td>
<td>277</td>
<td>Low</td>
</tr>
<tr>
<td>HR 7302</td>
<td>082</td>
<td>288</td>
<td>230</td>
<td>253</td>
<td>Low</td>
</tr>
<tr>
<td>GPU 6</td>
<td>125</td>
<td>157</td>
<td>257</td>
<td>267</td>
<td>Low</td>
</tr>
<tr>
<td>HR 911</td>
<td>115</td>
<td>145</td>
<td>208</td>
<td>279</td>
<td>Low</td>
</tr>
<tr>
<td>GE 2917</td>
<td>184</td>
<td>254</td>
<td>291</td>
<td>311</td>
<td>Low</td>
</tr>
<tr>
<td>GE 2978</td>
<td>157</td>
<td>206</td>
<td>302</td>
<td>311</td>
<td>Low</td>
</tr>
</tbody>
</table>

Differences in solute potential of the seeds were also observed depending on the prevailing conditions during panicle development. In a study with ten finger millet genotypes, it was shown that seeds obtained from a rainfed crop which had experienced stress, had higher germinability and seedling vigour when osmotic stress was imposed during germination. It was concluded that this higher germinability was possibly related to the higher solute content in the seeds particularly sucrose (Tables 2, 3). Such induced variability could be exploited. Similar results have been obtained with simple seed hardening techniques (Sastry et al., 1969; Rajasekhar et al., 1970). Genotypic differences in emergence of seedling under crust situations have also been observed (Table 4).

Although significant genotypic variations have been observed in several of these characteristics associated with seedling establishment, a breeding programme to incorporate these parameters is difficult and time consuming. It is worthwhile to develop agronomical techniques which can induce tolerance or facilitate stress avoidance thereby enhancing seedling vigour.
TABLE 2
Germination of finger millet seeds from stressed and non-stressed plants in water and in simulated stress with polyethylene glycol (PEG) of -8 and -12 bars

<table>
<thead>
<tr>
<th>Variety & treatment</th>
<th>Experiment - I</th>
<th></th>
<th>Experiment - II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂O 96 hrs</td>
<td>PEG -8 bars 96 hrs</td>
<td>Water 96 hrs</td>
</tr>
<tr>
<td>PES 176 T₁</td>
<td>100</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>T₂</td>
<td>100</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>PR 202 T₁</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>T₂</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>LSD for variety</td>
<td>-</td>
<td>13.9</td>
<td>-</td>
</tr>
<tr>
<td>LSD for treatment</td>
<td>-</td>
<td>25.5</td>
<td>-</td>
</tr>
</tbody>
</table>

T₁ - Rainfed stress with 100 kg N/ha
T₂ - Control (irrigated) with 100 kg N/ha

TABLE 3
Solute potential of finger millet seeds (- bars) from stressed and non-stressed plants grown under field conditions

<table>
<thead>
<tr>
<th>Variety</th>
<th>'A'</th>
<th>'B'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute potential</td>
<td>Solute potential</td>
</tr>
<tr>
<td></td>
<td>(Unit weight of</td>
<td>(Unit number of</td>
</tr>
<tr>
<td></td>
<td>seeds 500 mg)</td>
<td>seeds 200)</td>
</tr>
<tr>
<td>PES 176</td>
<td>-11.2</td>
<td>-9.8</td>
</tr>
<tr>
<td>PR 202</td>
<td>-9.7</td>
<td>-12.3</td>
</tr>
<tr>
<td>IE 1022</td>
<td>-9.5</td>
<td>-10.5</td>
</tr>
<tr>
<td>HR 911</td>
<td>-10.4</td>
<td>-9.2</td>
</tr>
<tr>
<td>HR 374</td>
<td>-9.2</td>
<td>-11.7</td>
</tr>
<tr>
<td>Indaf 5</td>
<td>-8.8</td>
<td>-11.2</td>
</tr>
<tr>
<td>Indaf 9</td>
<td>-7.1</td>
<td>-8.3</td>
</tr>
<tr>
<td>DRKPES 1</td>
<td>-8.4</td>
<td>-12.3</td>
</tr>
<tr>
<td>U 10</td>
<td>-8.6</td>
<td>-9.1</td>
</tr>
<tr>
<td>TNAU 294</td>
<td>-9.1</td>
<td>-10.2</td>
</tr>
</tbody>
</table>

'A' - LSD for variety 1.25; LSD for treatment 1.75
'B' - LSD for variety 1.80; LSD for treatment 1.65
T₁ - Rainfed stress with 100 kg N/ha
T₂ - Control (irrigated) with 100 kg N/ha
MOISTURE STRESS AS THE LIMITING FACTOR FOR GROWTH AND PRODUCTIVITY

Depending on the stress situation, the mechanisms adapted by plants to drought stress are different. There are specific escape, avoidance and tolerance mechanisms. Their importance and relevance have been extensively reviewed (Hsiao, 1973; Levitt, 1980; Paleg and Aspinall, 1981). These mechanisms either favour survival under stress situation or help in maintaining good productivity under stress situations (Fig. 3).

In our concept, it is more important for a drought resistant crop to have characteristics associated with maximizing productivity under stress situations rather than to ensure mere survival.

The adaptive strategies for high productivity under rainfed conditions, in order of priority could be as shown in Fig. 4.

The best strategy for rainfed conditions is increasing the water harvesting and its utilization efficiency. The total productivity of any crop depends on the evapotranspiration (ET) water use efficiency (WUE) and the harvest index (HI).

Agronomical approach to enhance the moisture conservation and a few strategies to minimise water loss like mulching and practising optimum date of sowing have given rich dividends for enhancing productivity of rainfed crops.

Apart from these practices two other physiological processes associated with water harvesting and water conservation are: (1) root factors and (2) the plant processes associated with transpiration quotient (TQ).

ROOT FACTORS

An important feature of a drought resistant plant could be its deep root system. The relevance of root volume, spread and depth, relative energy allocation to roots, and the vertical conductances of the root system has been reviewed by Passioura (1981, 1981a). An extensive root system seems to be relevant only under a specific agroclimatic situation and it is soil and crop specific.

TABLE 4

<table>
<thead>
<tr>
<th>Variety</th>
<th>Control</th>
<th>Moisture stress</th>
<th>3 days after rewatering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 DAS</td>
<td>7 DAS</td>
<td>5 DAS</td>
</tr>
<tr>
<td>Indaf 8</td>
<td>70.5</td>
<td>87.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Hullebele</td>
<td>88.0</td>
<td>89.5</td>
<td>20.5</td>
</tr>
<tr>
<td>JNR 852</td>
<td>62.5</td>
<td>69.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Indaf 5</td>
<td>48.0</td>
<td>58.5</td>
<td>19.5</td>
</tr>
<tr>
<td>ROH 2</td>
<td>66.0</td>
<td>69.0</td>
<td>20.5</td>
</tr>
<tr>
<td>PES 172</td>
<td>84.5</td>
<td>89.0</td>
<td>68.0</td>
</tr>
<tr>
<td>PR 202</td>
<td>78.5</td>
<td>82.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>
Strategies for higher productivity with drought avoidance mechanisms:

(a) Maintenance of water uptake
 Root characters
(b) Water utilization efficiency
 Characters associated with low transpiration quotient (TQ)
(c) Higher partitioning efficiency
 i) High HI
 ii) Remobilization of reserve carbohydrates

Strategies for less reduction in productivity with drought escape mechanisms:

(a) Developmental plasticity
 i) Postponement of flowering
 ii) Plasticity of tillering

Strategies for less reduction in productivity with drought tolerant mechanisms.

(a) High crop growth rates under stress and on alleviation of stress
 Characters at the organ level:
 i) Higher growth rate with low tissue water potential
 ii) Higher leaf expansion on alleviation of stress
 iii) Higher partitioning on stress alleviation.
 Characters at cellular level:
 i) Osmoregulation
 ii) Chloroplast integrity
 iii) Hormonal factors
 iv) Membrane integrity

Strategies resulting in possible reduction in productivity with drought avoidance characters:

 i) Increase in stomatal and cuticular resistance
 ii) Reduction in radiation load
 iii) Reduction in evaporative surface.

Fig. 3. Adaptive mechanisms and their relationship with productivity under intermittent drought stress

(1) Higher water harvesting and utilization efficiency.
 (a) Water conservation mechanism (Agronomical).
 (b) Water harvesting by roots
 (c) Efficient water utilization (TQ).
(2) Developmental plasticity under stress
(3) Survival and growth under stress and higher crop growth rate after alleviation from stress.
(4) Partitioning and effective remobilization of reserves.

Fig. 4. Important adaptive strategies in finger millet for higher productivity under rainfed conditions

As soil water potential in the surface layers decreases, water retained in the deeper layers makes a larger contribution to ET. Often, in many shallow rooted crops like the small millets, when most of the moisture from the upper layers is exhausted, the plant is unable to extract water to satisfy the ET demand even though soil water available in the deeper layer is still high (Fig. 5). Under these conditions a deeper root system may have an advantage.
The following aspects need to be investigated further:

i) Development of suitable techniques for rapid and accurate measurement of root depth, spread and activity.

ii) Duration of the functional root system during the crop growth period.

iii) The characteristics associated with hydraulic conductivity (longitudinal resistance to flow) of root system.

iv) The relative allocation of carbohydrates to root systems and its significance.

Genotypic differences in root density especially in deeper soil layers, are well documented in some crop species like rice (Yoshida and Hasegawa, 1982). Since, finger millet is predominantly grown in soils with adequate moisture in the deep soil layers, it is necessary to develop a suitable programme to identify genotypes with higher water extraction capabilities.

PLANT PROCESSES ASSOCIATED WITH HIGH WATER USE EFFICIENCY

The physiological and biochemical factors associated with a low transpiration quotient (TQ) (high water use efficiency) are other important adaptive strategies of the plants for higher productivity under stress conditions.
Although the total evapotranspiration always shows a relationship with biomass production and productivity \((\text{Yield} = \text{Total ET} \times \text{WUE} \times \text{HI})\), the differences in productivity amongst genotypes at a given level of evapotranspiration are mainly attributed to variation in TQ or WUE. Hence, it is an important character under field conditions for efficient water utilization. The high WUE achieved by some species in semi-arid and arid conditions is often attributed to increased assimilation rate per unit water transpired (Bierhuzin, 1976).

Stomatal and mesophyll characteristics are basically responsible for the variation in TQ. However, under field conditions canopy characteristics have to be considered in terms of the relative rates of water loss and assimilation. The canopy conductance, a product of the stomatal conductance and Leaf Area Index (LAI) (Squire and Black, 1981), is an important determinant of productivity under field conditions. In this context, the total number of stomata is a more useful parameter as it takes into account the variability in both stomatal frequency and leaf area. A higher number of stomata per plant would increase the total transpirational water loss concurrently.

For crops grown under rainfed conditions, genotypes with low canopy transpiration rates are desirable (Jones, 1977). This can be achieved by identifying types with low conductances (Jones, 1979) or alternatively with genetically low leaf area (LA) or low number of stomata per plant but without sacrificing the ability to produce higher dry matter (DM), since the latter is highly correlated with grain yield in finger millet (Figs. 6, 7) (Sastry et al., 1982).

Field experiments were conducted at our centre during summer and monsoon seasons to investigate the possibility of identifying genotypes with genetically low leaf area or leaf area duration (LAD), yet having good grain yield and biomass. In such genotypes the canopy water loss is likely to be relatively lower than in genotypes with larger leaf area (Figs. 8, 9). Since, earlier studies (Sastry et al., 1982) had shown a high positive and significant correlation between dry matter production and grain yield in finger millet, the biological yield was used as the primary selection criteria to screen genotypes.

In a field experiment conducted with 100 medium duration genotypes a significant variation in total biomass, LA, HI, NAR and yield were observed. Among these genotypes there were distinct genotypes some with high leaf area, high dry matter and high harvest index and others with low leaf area, high dry matter and high harvest index (Table 5). Successive field experiments conducted in selected high and low leaf area types with high biomass and high harvest index have shown the possibility of identifying genotypes with low and high stomatal number (Tables 6 and 7). It is logical to assume that total canopy water loss would be low in genotypes with low leaf area or low stomatal number. Since the small millet crops, such as finger millet, are predominantly rainfed crops, this character assumes greater importance. If the total biological yield
Fig. 6. Simple linear regression between shoot dry matter and yield A, B, C, D, E—each representing a group of genotypes with different durations time taken in days for 50% flowering was: A—less than 60 days, B—60-65 days, C—65-70 days, D—70-75 days and E—more than 75 days.

Fig. 7. Simple linear regression of shoot weight (A) moderate stress (B) severe stress.
BIOMASS x HI = Y

(High biomass always associated with high yield)

HIGH LA
(Moderate PE)

HIGH LA
HIGH gs LOW gs
LOW gm HIGH gm

HIGH CANOPY CONDUCTANCES
MODERATE CANOPY gs

HIGH TRANSPERSION
MODERATE TRANSPERSION

LOW LA
(High PE)

LOW LA
HIGH gs LOW gs
LOW gm HIGH gm

MODERATE CANOPY gs
LOW TRANSPERSION

Fig. 8. Approach for identifying types with low canopy transpiration and high productivity.

GERMPLASM

GENOTYPES SCREENED FOR HIGH BIOMASS
HIGH + HI

HIGH STOMATAL NUMBER PER PLANT

HIGH LA + HIGH/MODERATE STOMATAL FREQUENCY

CARBON EXCHANGE RATE (CER)
MODERATE / LOW

LOW STOMATAL NUMBER PER PLANT

LOW LA + MODERATE/LOW STOMATAL FREQUENCY

CER HIGH

Fig. 9. Selection of plant types in finger millet for low canopy transpiration and high biomass.
is still high in these genotypes despite a reduction in assimilation leaf area, then the CER should be high leading to higher grain productivity. Our studies on photosynthetic 14CO$_2$ fixation and with gas exchange techniques have confirmed that the rate of carbon fixation was nearly twice as high in these low LA types with high DM production (Tables 8, 9) (Sashidhar et al., 1986). High carbon exchange ratio (CER) in these genotypes could be mainly due to high mesophyll conductances and also the significance of these factors in maintaining low TQ has been emphasised (Slatyer, 1973; Grubben, 1975; Bierhuzin, 1976).

The genotypes identified with low stomatal number and high dry matter were tested for the relative drought tolerance by subjecting them to different moisture stress conditions in an experiment conducted during rainfed period. Genotypes with low stomatal number and high biomass showed less reduction of biomass and yield when subjected to intermittent moisture stress compared to genotypes with high stomatal number and high biomass (Table 10). In a very recent study by Blum et al. (1986) similar results were obtained for land races of pearl millet adapted to different ecological conditions. They showed that the land race of millet which was well adapted to low rainfall regions had smaller leaf area associated with high carbon exchange rates.

PHYSIOLOGICAL CHARACTERISTICS ASSOCIATED WITH HIGH WUE

Precise gravimetric techniques have been developed in our laboratory to assess the differences in TQ amongst the genotypes (Malathi et al., 1986).
TABLE 6

Variation in stomatal frequency (number per mm²) in leaves at different canopy positions and the total number of stomata per plant in genotypes of finger millet with high and low leaf area

<table>
<thead>
<tr>
<th>Range and mean frequency in relation to leaf position</th>
<th>Mean frequency</th>
<th>Range & mean LA 85 DAS</th>
<th>Mean stomatal No. per plant (X 10⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top (L₁)</td>
<td>Middle (L₄)</td>
<td>Bottom (L₈)</td>
<td></td>
</tr>
<tr>
<td>High LA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaxial surface</td>
<td>101-156</td>
<td>85-158</td>
<td>96-137</td>
</tr>
<tr>
<td>(125)</td>
<td>(117)</td>
<td>(111)</td>
<td></td>
</tr>
<tr>
<td>Abaxial surface</td>
<td>78-151</td>
<td>87-112</td>
<td>89-112</td>
</tr>
<tr>
<td>(118)</td>
<td>(98)</td>
<td>(100)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>111.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low LA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaxial surface</td>
<td>110-229</td>
<td>112-190</td>
<td>114-221</td>
</tr>
<tr>
<td>(148)</td>
<td>(126)</td>
<td>(139)</td>
<td></td>
</tr>
<tr>
<td>Abaxial surface</td>
<td>98-172</td>
<td>89-154</td>
<td>94-147</td>
</tr>
<tr>
<td>(118)</td>
<td>(108)</td>
<td>(116)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>125.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 7
Genotypic variation in growth and yield attributes and stomatal number in high and low leaf area types of finger millet

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Stomatal frequency</th>
<th>LAI</th>
<th>LAD (days)</th>
<th>NAR (g. dm2 per day)</th>
<th>Stomatal number per plant (X 105)</th>
<th>DM at harvest (g. per 1-m length of row)</th>
<th>Grain yield (g. per 1-m length of row)</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I: High LA, high DM and high HI:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 1097</td>
<td>243</td>
<td>2.22</td>
<td>204.3</td>
<td>0.13</td>
<td>23.2</td>
<td>354</td>
<td>85.2</td>
<td>0.55</td>
</tr>
<tr>
<td>GE 476</td>
<td>257</td>
<td>4.79</td>
<td>245.6</td>
<td>0.11</td>
<td>27.8</td>
<td>406</td>
<td>112.5</td>
<td>0.35</td>
</tr>
<tr>
<td>GE 966</td>
<td>248</td>
<td>4.56</td>
<td>239.2</td>
<td>0.15</td>
<td>25.4</td>
<td>371</td>
<td>91.3</td>
<td>0.39</td>
</tr>
<tr>
<td>JNR 852</td>
<td>277</td>
<td>4.85</td>
<td>220.8</td>
<td>0.13</td>
<td>24.8</td>
<td>367</td>
<td>112.8</td>
<td>0.36</td>
</tr>
<tr>
<td>GE 821*</td>
<td>200</td>
<td>2.95</td>
<td>181.9</td>
<td>0.08</td>
<td>13.2</td>
<td>369</td>
<td>99.2</td>
<td>0.38</td>
</tr>
<tr>
<td>Mean</td>
<td>236</td>
<td>4.61</td>
<td>227.4</td>
<td>0.13</td>
<td>25.3</td>
<td>374</td>
<td>100.4</td>
<td>0.45</td>
</tr>
<tr>
<td>Category II: Low LA, high DM high HI:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 187</td>
<td>257</td>
<td>1.79</td>
<td>108.3</td>
<td>0.21</td>
<td>10.4</td>
<td>333</td>
<td>87.4</td>
<td>0.42</td>
</tr>
<tr>
<td>HR 23A*</td>
<td>245</td>
<td>4.62</td>
<td>239.9</td>
<td>0.14</td>
<td>25.6</td>
<td>397</td>
<td>114.1</td>
<td>0.54</td>
</tr>
<tr>
<td>GE 325B</td>
<td>232</td>
<td>2.43</td>
<td>115.4</td>
<td>0.18</td>
<td>12.6</td>
<td>475</td>
<td>102.9</td>
<td>0.32</td>
</tr>
<tr>
<td>ROH 2</td>
<td>245</td>
<td>2.74</td>
<td>152.7</td>
<td>0.20</td>
<td>15.2</td>
<td>498</td>
<td>115.0</td>
<td>0.38</td>
</tr>
<tr>
<td>GE 94</td>
<td>200</td>
<td>2.03</td>
<td>152.9</td>
<td>0.15</td>
<td>13.6</td>
<td>364</td>
<td>81.9</td>
<td>0.54</td>
</tr>
<tr>
<td>Mean</td>
<td>236</td>
<td>2.50</td>
<td>132.3</td>
<td>0.18</td>
<td>12.9</td>
<td>417</td>
<td>96.8</td>
<td>0.42</td>
</tr>
<tr>
<td>L.S.D.</td>
<td>(P<0.05)</td>
<td>32</td>
<td>1.01</td>
<td>NS</td>
<td>4.6</td>
<td>8</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

LAI—leaf area index; LAD—Leaf area duration; NAR—Net assimilation rate; DM—Dry matter; HI—Harvest index; *Ten plants per m. GE 821, HR 23A, classified as low and high LA types respectively in previous experiment, not consistent; eliminated for experiment 3, not included for mean.
M. Udaya Kumar et al. 193

TABLE 8
Photosynthetic 14CO$_2$ fixed by the leaves at different canopy positions in selected genotypes with high and low leaf area associated with high dry matter production

<table>
<thead>
<tr>
<th>Fixation rate (cpm mg$^{-1}$ dry wt.)</th>
<th>Genotypes</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
<th>Average specific activity (cpm mg$^{-1}$ dry wt.)</th>
<th>Activity per plant (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High LA, high DM, high HI types:</td>
<td>GE 476</td>
<td>20</td>
<td>18</td>
<td>10</td>
<td>16</td>
<td>175377</td>
</tr>
<tr>
<td></td>
<td>GE 1097</td>
<td>30</td>
<td>33</td>
<td>9</td>
<td>24</td>
<td>191810</td>
</tr>
<tr>
<td></td>
<td>JNR 852</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td>16</td>
<td>172027</td>
</tr>
<tr>
<td>Low LA, high DM and high HI types:</td>
<td>GE 187</td>
<td>38</td>
<td>44</td>
<td>25</td>
<td>36</td>
<td>166172</td>
</tr>
<tr>
<td></td>
<td>GE 325B</td>
<td>41</td>
<td>44</td>
<td>36</td>
<td>11</td>
<td>159852</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>48</td>
<td>178012</td>
</tr>
<tr>
<td></td>
<td>LSD (P 0.05)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.2</td>
<td>NS</td>
</tr>
</tbody>
</table>

Each value is an average from 6 plants; LA — Leaf area; DM — Dry matter; HI — Harvest index.

TABLE 9
Photosynthetic rate in selected genotypes with high and low leaf area associated with high dry matter production

<table>
<thead>
<tr>
<th>Photosynthetic rate (mg. CO$_2$ dm$^{-2}$ h$^{-1}$)</th>
<th>At anthesis</th>
<th>10 days after anthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>High LA, high DM, high HI types:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 476</td>
<td>23.4</td>
<td>26.3</td>
</tr>
<tr>
<td>GE 1097</td>
<td>20.4</td>
<td>23.6</td>
</tr>
<tr>
<td>JNR 852</td>
<td>22.3</td>
<td>24.4</td>
</tr>
<tr>
<td>Mean</td>
<td>22.03</td>
<td>24.77</td>
</tr>
<tr>
<td>Low LA, high DM, high HI types:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 187</td>
<td>36.5</td>
<td>37.2</td>
</tr>
<tr>
<td>GE 325B</td>
<td>33.4</td>
<td>34.7</td>
</tr>
<tr>
<td>Mean</td>
<td>34.9</td>
<td>35.9</td>
</tr>
<tr>
<td>LSD (P 0.05)</td>
<td>4.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>

LA — Leaf area; DM — Dry matter; HI — Harvest index
TABLE 10
Growth and yield parameters in low and high stomatal number types under two moisture regimes

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Total dry matter (g/plant) 80 DAS</th>
<th>Leaf area (cm²) (80 DAS)</th>
<th>Leaf area duration (LAD) days</th>
<th>Grain yield (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Stress</td>
<td>Control</td>
<td>Stress</td>
</tr>
<tr>
<td>High stomatal number & high dry matter</td>
<td>GE 161</td>
<td>19.63</td>
<td>16.9</td>
<td>968</td>
</tr>
<tr>
<td>GE 282</td>
<td>25.66</td>
<td>19.2</td>
<td>747</td>
<td>541</td>
</tr>
<tr>
<td>JNR 852</td>
<td>27.06</td>
<td>17.2</td>
<td>918</td>
<td>812</td>
</tr>
<tr>
<td>Mean</td>
<td>24.12</td>
<td>17.9</td>
<td>844</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>(25.7)</td>
<td>(28.7)</td>
<td>(25.5)</td>
<td>(11.6)</td>
</tr>
<tr>
<td>Low stomatal number & high dry matter</td>
<td>GE 325</td>
<td>26.22</td>
<td>20.18</td>
<td>543</td>
</tr>
<tr>
<td>HR 23A</td>
<td>23.84</td>
<td>21.82</td>
<td>634</td>
<td>532</td>
</tr>
<tr>
<td>Mean</td>
<td>25.03</td>
<td>21.00</td>
<td>588</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>(15.9)</td>
<td>(10.0)</td>
<td>(14.30)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>LSD (P<0.05)</td>
<td>Treatments</td>
<td>3.84</td>
<td>129.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Varieties</td>
<td>NS</td>
<td>204.4</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Control—Non-stressed block was given three protective irrigations to alleviate moisture stress at critical stages.
(b) Rainfed stress block. Values in the parentheses indicate per cent reduction due to stress.
By determining the cumulative water transpired and the dry matter accumulated during the crop growth period, genotypes differing distinctly in TQ were identified (Table 11). Apart from TQ, variation in cumulative water used (CWU) and other physiological characters like leaf area, transpiration rate per unit leaf area, stomatal behaviour and net assimilation rate (NAR) were observed. The major factors contributing for low TQ were high NAR and low transpiration rate per unit leaf area.

Based on these studies it was possible to identify genotypes with varying levels of cumulative water use and transpiration quotient:

1. High CWU and high TQ
2. Low CWU and high TQ
3. High CWU and low TQ
4. Low CWU and low TQ.

Our studies have shown that the genotypes belonging to the latter two groups are better for rainfed conditions. Genotypes with high CWU and low

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Cumulative water used (CWU) (ml)</th>
<th>Leaf area (cm²)</th>
<th>Transpiration quotient (TQ)</th>
<th>CWU/TDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected genotypes with low LA/high DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 94</td>
<td>6675</td>
<td>36.5</td>
<td>767</td>
<td>182</td>
</tr>
<tr>
<td>GE 325</td>
<td>5820</td>
<td>23.5</td>
<td>583</td>
<td>247</td>
</tr>
<tr>
<td>ROH 2</td>
<td>7147</td>
<td>23.4</td>
<td>926</td>
<td>305</td>
</tr>
<tr>
<td>GE 3209</td>
<td>7452</td>
<td>29.2</td>
<td>505</td>
<td>255</td>
</tr>
<tr>
<td>GE 2327</td>
<td>5749</td>
<td>23.0</td>
<td>969</td>
<td>249</td>
</tr>
<tr>
<td>GE 2338</td>
<td>5759</td>
<td>35.1</td>
<td>1039</td>
<td>186</td>
</tr>
<tr>
<td>GE 2444</td>
<td>7892</td>
<td>35.1</td>
<td>1088</td>
<td>224</td>
</tr>
<tr>
<td>GE 2008</td>
<td>8368</td>
<td>41.3</td>
<td>1537</td>
<td>202</td>
</tr>
<tr>
<td>Mean</td>
<td>6857</td>
<td>30.3</td>
<td>926</td>
<td>231</td>
</tr>
<tr>
<td>Selected genotypes with high LA/high DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 1097</td>
<td>6458</td>
<td>27.7</td>
<td>1137</td>
<td>233</td>
</tr>
<tr>
<td>GE 2976</td>
<td>6499</td>
<td>33.1</td>
<td>1832</td>
<td>196</td>
</tr>
<tr>
<td>GE 3255</td>
<td>6666</td>
<td>32.2</td>
<td>1154</td>
<td>213</td>
</tr>
<tr>
<td>JNR 852</td>
<td>8107</td>
<td>41.1</td>
<td>1542</td>
<td>197</td>
</tr>
<tr>
<td>GE 476</td>
<td>6544</td>
<td>27.7</td>
<td>1292</td>
<td>236</td>
</tr>
<tr>
<td>GE 3243</td>
<td>7207</td>
<td>35.9</td>
<td>2110</td>
<td>200</td>
</tr>
<tr>
<td>GE 2969</td>
<td>6152</td>
<td>26.6</td>
<td>1556</td>
<td>231</td>
</tr>
<tr>
<td>Mean</td>
<td>6804</td>
<td>31.9</td>
<td>1517</td>
<td>225</td>
</tr>
</tbody>
</table>
TQ types have an advantage when moisture available in the deeper layers can be harvested. In this type high CWU is possibly associated with greater stomatal conductances resulting in a high water demand. However, if moisture is severely limited it is imperative to select types with a low CWU associated with a low transpiration quotient. Again in these types the low CWU may presumably be a consequence of lower canopy conductances.

In general, the small leaf area types showed low TQ associated with low CWU. Genotypes with moderate or larger leaf area associated with high NAR and high transpiration showed high CWU with low TQ (Fig. 10).

Desirable: Moderate CWU, high DM, low TQ, high NAR, low LA

Fig. 10. Characteristics associated with low transpiration quotient (TQ).

The desirable characters seem to be low TQ with moderate or high CWU with high dry matter. The morphological and physiological characters associated with such types could be:

i) Low leaf area (small leaf size/number)

ii) High dry matter

iii) High NAR/photosynthetic rate preferably by virtue of high mesophyll conductances

iv) Low canopy transpiration

v) High partitioning efficiency.
PHOTOSYNTHETIC RATES AND ITS IMPORTANCE TO PRODUCTIVITY UNDER RAINFED CONDITIONS

Biomass production is predominantly dependent on canopy photosynthesis. Though both leaf area and photosynthesis contribute to biomass production, increasing the photosynthetic efficiency is advantageous especially for crops grown under rainfed conditions. Genotypes with high photosynthetic rate may still produce high biomass with small leaf area. Such types will have a lower transpiration leaf area, and could be expected to have a low transpiration quotient and high water use efficiency. The concept of low leaf area and high photosynthetic efficiency and high biomass types of small millets having an advantage under rainfed conditions has been established recently (Gurumurthy, 1982; Sastry et al., 1982; Sashidhar et al., 1984, 1986).

The genotypic differences in photosynthetic efficiency (PE) are often arrived at by measuring PE in a single leaf. A precise measurement of mean canopy photosynthetic rate is difficult. The mean photosynthetic rate over crop growth period can be calculated by leaf area duration/dry matter (LAD/DM) ratios. Higher the value, lesser the photosynthetic rate and vice versa. This concept of LAD/DM can be extended and widely adopted as a preliminary screening technique for determining the canopy photosynthetic rate in different genotypes. Differences in PE of different leaves of canopy, diurnal fluctuations in PE and problems associated with plant architecture like mutual shading are taken care of by determining LAD/DM ratios. However, differences if any, in dark respiration will slightly alter this value. The genotypes selected for high biomass and low leaf area were shown to have high PE in finger millet (Sashidhar et al., 1984) and mungbean (Devendra, 1986).

Significant genotypic variation exists in the photosynthetic rate in finger millet genotypes and several plant characteristics were shown to be associated with high PE and high translocation efficiency of photosynthates. The leaf vein frequency, the ratio of veinal width to leaf width, the mean veinal width and mean inter veinal width showed significant relationship with PE and also translocation of photosynthates (Table 12). Some of these characteristics have been shown to have high heritability value and genetic advance (Perumal, 1982) and could be used in the breeding programme to improve photosynthetic traits.

DEVELOPMENTAL PLASTICITY

In spite of the inbuilt mechanism for low transpiration quotient in finger millet, the crop experiences severe moisture stress in many locations during early stages of growth even with a good degree of soil moisture conservation practices. Stress induced plasticity in postponing the flowering and development of new tillers on stress alleviation are often suggested as adaptive mechanisms under such situations.
TABLE 12
Range, mean in leaf characteristics of the first leaf at flowering and its relationship to photosynthetic efficiency in 42 finger millet genotypes

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Range</th>
<th>Mean</th>
<th>CD</th>
<th>Correlation coefficient 'r' value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf width (µ)</td>
<td>4700-7300</td>
<td>6169</td>
<td>578</td>
<td>-0.41</td>
</tr>
<tr>
<td>Total vein number/leaf</td>
<td>24.0-32.3</td>
<td>28.2</td>
<td>2.1</td>
<td>0.59</td>
</tr>
<tr>
<td>Total major vein number</td>
<td>6.0-7.3</td>
<td>6.5</td>
<td>0.9</td>
<td>0.03</td>
</tr>
<tr>
<td>Total minor vein number</td>
<td>17.7-26.0</td>
<td>21.6</td>
<td>2.0</td>
<td>0.58</td>
</tr>
<tr>
<td>Minor/major vein number ratio</td>
<td>2.5-4.13</td>
<td>3.28</td>
<td>0.5</td>
<td>0.50</td>
</tr>
<tr>
<td>Leaf vein frequency</td>
<td>3.88-5.61</td>
<td>4.82</td>
<td>0.5</td>
<td>0.78**</td>
</tr>
<tr>
<td>Ratio of vein width/leaf width</td>
<td>21.14-33.2</td>
<td>28.1</td>
<td>2.3</td>
<td>0.76**</td>
</tr>
<tr>
<td>Mean veinal width (µ)</td>
<td>48.69</td>
<td>58</td>
<td>2.2</td>
<td>0.76**</td>
</tr>
<tr>
<td>Mean inter veinal width (µ)</td>
<td>123-203</td>
<td>151</td>
<td>15</td>
<td>-0.82**</td>
</tr>
<tr>
<td>Phloem width (µ)</td>
<td>397-697</td>
<td>555</td>
<td>84</td>
<td>0.50</td>
</tr>
<tr>
<td>Leaf thickness at base (µ)</td>
<td>200-356</td>
<td>333</td>
<td>59</td>
<td>0.40</td>
</tr>
<tr>
<td>Specific leaf weight (mg/cm²)</td>
<td>3.83-4.32</td>
<td>4.22</td>
<td>0.2</td>
<td>0.53</td>
</tr>
<tr>
<td>Total veinal width (µ)</td>
<td>1364-2072</td>
<td>1737</td>
<td>205</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Range in PE 12238-22172
(14C fixation gm⁻¹ leaf dry weight)
Mean 19001
CD 5% 2786

Medium duration cultivars have better plasticity both in terms of postponement of flowering during stress and production of new tillers on stress alleviation as compared to early cultivars. However, the information available on variations in developmental plasticity in finger millet is scanty.

PLASTICITY IN TILLERING

Mid-season drought stress effect on overall productivity has been shown to be less in tillering genotypes with an ability for tiller development on alleviation of stress (Alagarswamy, 1981). However, in finger millet, the specific advantage of tillering types under stress situations has not been elucidated so far. In many genotypes of finger millet, the productivity of successive tillers reduces drastically (Tables 13, 14) and the late formed tillers and nodal tillers formed after stress alleviation contribute very little to grain weight.
TABLE 13
Number of ears and their grain weight in different tillers in finger millet

<table>
<thead>
<tr>
<th>Variety</th>
<th>Total ears/plant</th>
<th>Grain weight g/plant</th>
<th>Main ear weight (g)</th>
<th>Primary and secondary</th>
<th>Side shoot ears</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of ears</td>
<td>Grain wt./ear (g)</td>
<td>Number of ears</td>
<td>Grain weight/ear (g)</td>
<td></td>
</tr>
<tr>
<td>Variety—I</td>
<td>6.91</td>
<td>22.66</td>
<td>3.19</td>
<td>3.95</td>
<td>2.72</td>
</tr>
<tr>
<td>Variety—II</td>
<td>6.96</td>
<td>15.80</td>
<td>3.08</td>
<td>2.69</td>
<td>2.88</td>
</tr>
</tbody>
</table>

TABLE 14
Relative contribution of basal and nodal tillers to the total tillers in finger millet (Rainfed kharif crop, 1981)*

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Total tillers/plant</th>
<th>A Unproductive tillers</th>
<th>B§ Productive nonharvestable</th>
<th>C Productive harvestable</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Total harvestable tillers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR 23 A</td>
<td>4.85</td>
<td>0.30</td>
<td>0.13</td>
<td>3.80</td>
<td>0.16</td>
<td>0.30</td>
<td>0.16</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>(100)*</td>
<td>(6.20)</td>
<td>(2.70)</td>
<td>(78.4)</td>
<td>(3.3)</td>
<td>(6.20)</td>
<td>(3.30)</td>
<td>(81.7)</td>
</tr>
<tr>
<td>JNR 852</td>
<td>5.98</td>
<td>0.20</td>
<td>0.16</td>
<td>4.80</td>
<td>0.23</td>
<td>0.46</td>
<td>0.13</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td>(100)</td>
<td>(3.30)</td>
<td>(2.7)</td>
<td>(80.3)</td>
<td>(3.80)</td>
<td>(7.7)</td>
<td>(2.20)</td>
<td>(82.5)</td>
</tr>
</tbody>
</table>

* — Values in parenthesis indicate per cent of total tillers
§ — Tillers with ears but not mature at the time of harvest of main ear
* — Rainfed crop suffered stress at panicle initiation (PI) and anthesis.
In finger millet, a relationship exists between productivity and mean ear weight, but not ear number per plant (Fig. 11). Thus in recently developed genotypes, the higher yield potential is the result of enhanced mean ear weight. The plasticity in tillering as an adaptive mechanism under rainfed situations needs to be thoroughly investigated.

High Crop Growth Rate on Alleviation of Stress

The differences in productivity under rainfed situations are often attributed to differences in crop growth rates (CGR) on alleviation of stress. The functional leaf area at the end of stress period and resumption of leaf growth and its activity on alleviation of stress determines the CGR.

The leaf expansion even at low tissue water potential (under stress) is generally marginal and very little genetic variation exists in this character. In finger millet, our study has shown that as leaf water potential decreased, there was a rapid cessation of leaf elongation indicating that it is a very sensitive character to moisture stress. The threshold water potential at which leaf elongation was reduced by 50 per cent in maize was shown to be \(-4\) bars (Acevedo *et al*., 1971; Boyer, 1970). However, in finger millet, there is a resumption in leaf elongation on stress alleviation and in some genotypes the leaf elongation rates exceed that of the control (Figs. 12 and 13) (Vishwanath, 1977). Similar results were obtained by Ludlow and Ng (1976) in *Panicum maximum*.

The resumption of leaf expansion and the NAR depends on the intrinsic dehydration tolerance mechanisms like osmo-regulation, maintenance of membrane integrity, reduced photo-inhibition and photo-oxidation properties, and hormonal aspects.

Genotypic variations in CGR during stress are very limited and if they do exist, no systematic approaches were made to identify such types. However, marked genotypic variation in CGR on stress alleviation exists and it is essential to identify the biochemical and physiological parameters associated with them for further exploitation of genetic variability.
Fig. 12. Elongation of leaf No. 1. All the genotypes were grown in the same pot. Control were watered once a day. Water withheld on day zero and then rewatered on day ‘5’ for stress pots.
REMOBILIZATION OF RESERVE CARBOHYDRATES AND EAR CONTRIBUTION TO GRAIN YIELD

One major adaptive mechanism for enhancing productivity when stress occurs during later stages of crop growth is relative utilization efficiency of stem reserves for the grain development, as well as higher ear photosynthesis. Significant variation exists in partitioning of photosynthates under stress to the developing ear (Fig. 14). In finger millet, ear photosynthesis constitutes nearly 5 to 30 per cent to the grain dry weight (Perumal, 1982). Under stress condition the reduction in photo-synthetic rate of the ear is relatively very less compared to leaves (Perumal, 1982). The advantage of high glume size for higher ear photosynthesis and grain development by virtue of greater translocation has been shown in some collections of finger millet from Malawi (Table 15) (Sashidhar et al., 1984).
Fig. 14. Genotypic differences in mobilization of reserve carbohydrates to the ears under two levels of stress in finger millet

TABLE 15
Photosynthetic 14CO$_2$ fixation by the ears of long glumed (LG) and normal glumed genotypes of finger millet at anthesis

<table>
<thead>
<tr>
<th>Variety</th>
<th>Activity fixed (CPM/g)</th>
<th>Per cent increase over check (Indaf-5)</th>
<th>Activity fixed (CPM/organ)</th>
<th>Per cent increase over check (Indaf-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 2970 (LG)</td>
<td>16276</td>
<td>113</td>
<td>27069</td>
<td>218</td>
</tr>
<tr>
<td>GE 3301 (LG)</td>
<td>18614</td>
<td>143</td>
<td>39596</td>
<td>365</td>
</tr>
<tr>
<td>GE 2973 (LG)</td>
<td>15098</td>
<td>128</td>
<td>52958</td>
<td>622</td>
</tr>
<tr>
<td>PES 176</td>
<td>11131</td>
<td>–</td>
<td>10394</td>
<td>–</td>
</tr>
<tr>
<td>INDAF-5</td>
<td>7638</td>
<td>–</td>
<td>8519</td>
<td>–</td>
</tr>
<tr>
<td>CD at 5% P</td>
<td>3225</td>
<td>–</td>
<td>5225</td>
<td>–</td>
</tr>
</tbody>
</table>
CROP DURATION AND PRODUCTIVITY

The productivity of a genotype is often dependent on full exploitation of favourable growth period in an agroclimatic region. This led to the identification of location specific duration groups with desirable adaptive mechanisms suitable for each region. Duration of a genotype in different environments is controlled by its relative photoperiodic response, to a certain extent to thermoperiodic response and to a much lesser degree to the stress induced postponement or hastening of growth periods. In this regard, the response of finger millet to thermo-periodism seems to be very high, as seen from the distinct variation recorded when a single genotype was grown at different locations (Anonymous, 1986). These responses are varietal specific, and often the problem is compounded due to abiotic stresses existing in that region.

Although the mean growth duration of a particular group of genotypes may remain constant over locations, the duration of a genotype at different locations is markedly different. In finger millet there is always a direct relationship between growth duration and biomass productivity (Fig. 15). Such a relationship is also seen within a duration group in a particular location when other abiotic stresses are not limiting the productivity.

CVT=1	Early duration=11 varieties
CVT=2	Mid late=12 varieties
CVT=3	Late=12 varieties

Fig. 15. Relationship between crop growth duration and productivity in finger millet genotypes, mean of 24 locations (source—The all India millets workshop report 1985-86).
One of the approaches to exploit the entire crop growth period is to identify suitable quantitative photosensitive types. In this region the rainfall in the beginning of the season is erratic, unpredictable and often gets delayed. With a photoinsensitive type flexibility is not possible because the early sown crop matures early without exploiting the complete growth period and the late sown crop would fill the grains under moisture stress and cold conditions. Also many high yielding genotypes evolved are photoinsensitive and maturity period depends on the sowing date. Therefore, it is necessary to use different genotypes which suit the different sowing dates. Quantitative photosensitive genotypes are best suited and adjust to the flexibility in sowing dates (Table 16). However, one should be cautious with photosensitive genotypes since they possess limited range of adaptations and often possess low partitioning factors.

TABLE 16
Photoperiod response of quantitative photosensitive varieties when sown in May and July

<table>
<thead>
<tr>
<th>Days to anthesis</th>
<th>May sowing</th>
<th>July sowing</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 3011*</td>
<td>112</td>
<td>86</td>
</tr>
<tr>
<td>GE 3499*</td>
<td>122</td>
<td>88</td>
</tr>
<tr>
<td>GE 3480*</td>
<td>122</td>
<td>84</td>
</tr>
<tr>
<td>GE 2790**</td>
<td>88</td>
<td>78</td>
</tr>
<tr>
<td>PR 202**</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>JNR 7-1**</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>ELC 4 **</td>
<td>88</td>
<td>74</td>
</tr>
</tbody>
</table>

* Photosensitive
** Photointensive or weakly photosensitive

The quantitative short day plants have an advantage particularly when precipitation in an agroclimatic zone is bimodal. Such a situation occurs in some regions in Karnataka where premonsoon showers are adequate enough to support plant establishment and growth. However, premonsoon showers are followed by a rainfree period of 4 to 6 weeks before the monsoon sets in. An already established crop (if it survives the stress period) in this situation would have higher crop growth rate (CGR) on stress alleviation (monsoon period) and therefore these genotypes would be more productive. Under such situations, the desirable characteristics of the genotypes would be:

i) Establishment of the crop during premonsoon period.
ii) Tolerance to moisture stress for a period of 4 to 6 weeks.
iii) Higher crop growth rate on stress alleviation.
iv) Photosensitive nature of the genotype.
REFERENCES

Anonymous 1986. Annual Report of the All India millet Improvement Project, Finger millet, ICAR.

Alagarswamy, G. 1981. Some aspects of production physiology of pearl millet. Lecture delivered at the summer institute on production physiology of dryland crops held at the Andhra Pradesh Agricultural University, Hyderabad pp. 9-12.

INTRODUCTION

Small millets occupied an area of 6.3 m ha and produced 4.7 million tons of grain in India during the year 1983-84. Finger millet (ragi) alone occupied 41 per cent of the area under small millets and contributed about 64 per cent to the total production. The area under small millets is slowly declining with these lands diverted to other crops of higher money value. Whereas, the area under finger millet has marginally increased from 2.21 m ha in 1949-50 to 2.60 m ha in 1984-85, the area under small millets has decreased from 5.42 m ha to 3.63 m ha during the same period (Fig. 1).

Millets have a wide adaptability and can be grown in extremes of soil and climatic conditions. Many of the millets are short duration crops and are able to produce good green fodder within a span of 40-45 days. Few crops respond as markedly to modest applications of fertilizers as ragi and other millets do. They produce as much as 24 to 27 kg grain/ha/day in class III lands where other cereals yield only about 20 kg/ha/day (Gautam, 1977).

Millet grains are highly nutritious and in many respects are superior to rice and wheat. For example, dehusked proso millet has a protein content of 12.5 per cent whereas wheat has about 11.8 per cent. Finger millet is known for its high Ca content of 344 mg/100 g edible grain compared to wheat with only about 41 mg/100 g grain. At present the industrial use of these millets is limited except finger millet which is used for malting and brewing.

In spite of several favourable attributes in the millets, their further expansion will be severely limited unless efforts are substantially increased to improve their production technology. The present productivity is hardly 1160 kg for finger millet and 460 kg/ha for other small millets. The national target is to
Fig. 1. Area and production of small millets in India.
increase the production of finger millet to 5.25 million tons keeping the area constant at about 2.5 million ha and maintain the production of other small millets at about 1.5 million tons even when the area is reduced to about 2 million ha, by 2000 AD. This calls for raising the productivity of finger millet to 2100 kg/ha and that of other millets to 750 kg/ha.

There are several constraints limiting the higher productivity in small millets.

1) Excepting finger millet, millets are grown on poor shallow and marginal soils mainly under rainfed conditions. Some of these millets are still grown in the hilly areas under shifting cultivation which is one of the most primitive ways of crop production.

2) Seeds are often broadcast. This is a major bottle neck in taking inter-cultivation operations and effective weed control.

3) The mixed cropping practices adapted by the farmers are mostly suited to sustenance agriculture and many of them are not remunerative.

4) Small millets are often cultivated under unmanured and unfertilized conditions.

5) Non-adoption of improved varieties and timely agricultural operations like tillage, sowing, weeding and interculturing has resulted in non-remunerative returns.

6) Millets are consumed mostly in the regions of their production. There is neither market avenue nor industrial use for these grains.

As a result of continuous efforts in the State Agricultural Universities and All India Coordinated Research Project on Millet Improvement (AICMIP), suitable varieties and management practices have been evolved for different agroclimatic regions in the country. A small millet improvement project financed by the IDRC (International Development Research Centre, Canada) was started in 1979 in five centres which has contributed substantially to the production technology of small millets. An effort has been made in this article to compile the available information on the production technology for cultivation of these millets.

FINGER MILLET (Eleusine coracana GAERTN.)

Among millets, ragi or finger millet has an unique place and is the only millet which has been able to touch an average productivity level of more than a tonne per hectare. The crop has a wide range of seasonal adaptation and is grown in varying soil and temperature conditions. It can be grown throughout the year if moisture is adequate and if temperatures are above 15°C. It has adapted to conditions prevailing from sea level to an altitude of 3000 m. Though finger millet is a warm season crop, recent developments in breeding have brought out varieties which can tolerate cold.

Finger millet is cultivated in different soil types but is mainly grown on red and laterite soils. Alluvial and black soils are also suitable provided the
soils are well drained. As growing conditions differ from state to state, the choice of appropriate variety for a place depends on the agro climatic situations of the region. In the northern states, particularly in higher elevations, early maturing varieties (90-100 days) are required; and medium to late duration varieties (110-120 days) are preferred in the plains and southern states. As finger millet has a remarkable capacity for recovery, it is considered an excellent dryland crop. The minimum water requirement for successful growing of the crop is 400 mm, but can be grown in higher rainfall areas. In India, it is cultivated mostly in rainy season under dryland conditions with only a small area under irrigation. Out of the total area of 2.60 million ha under the crop in the country, only 0.35 million ha receives irrigation.

An excellent review of the world literature on the Eleusines is provided by Rachie and Peters (1977). A recent review of the production technology for rainfed finger millet is provided by Hegde and Seetharam (1985).

Tillage

The land preparation for finger millet varies from a little cultivation as in the slash and burn system to 5-6 ploughings with wooden ploughs before harrowing. Finger millet is generally cultivated in red and laterite soils which become hard on drying and form crust. To increase the infiltration and conserve moisture, tillage every year is essential in such soils.

Deep ploughing with iron mould board plough soon after the harvest of the previous crop or in May-June followed by cultivation with peg tooth cultivator is found advantageous. This practice increased the grain yield by about 200-300 kg per ha over the farmer’s practice of 2-3 wooden ploughings.

The seeds of finger millet being very small in size need to be sown at a shallow depth of 2-3 cm. In very loosely prepared soils, the seeds are likely to sink to deeper layers if rains occur. Therefore, soil compaction just below the seeding zone is recommended. The sequence of tillage is ploughing, passing a cultivator and then a tine tooth cultivator to smoothen the surface and crush the clods.

To keep the weeds under control and the surface loose, 2-3 intercultivations are essential. If the crust forms on the surface within four days after sowing, a cylindrical spiked crust breaker can be rolled on the field. The farmers use a thorny brush harrow for crust breaking in absence of the availability of the crust breaker.

Time of sowing and method of establishment

As a dryland crop, finger millet is sown in July in the southern States and in May-June in northern States. This is recommended in view of about 120 days required for maturity of medium duration varieties. Shorter duration varieties can be sown later but their yield potential is usually low. When long duration varieties are sown late in kharif, they come to heading 2-3 weeks
in advance. In general, the yield levels are reduced when sown late except in stable varieties like PR 202.

Varieties suitable for different seasons are identified and are recommended for each region.

<table>
<thead>
<tr>
<th>State</th>
<th>Season</th>
<th>Variety</th>
<th>Month of sowing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>Early Kharif</td>
<td>AKP 2, V2M-1, Sharada, Godavari and Kalyani</td>
<td>May</td>
</tr>
<tr>
<td></td>
<td>Kharif</td>
<td>V2M-1, Sharada, Godavari and Kalyani</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rabi</td>
<td>Snhadhari and Kalyani</td>
<td>August-September</td>
</tr>
<tr>
<td>Bihar</td>
<td>Kharif</td>
<td>BR 2, BR 407, RAU 8, HR 374</td>
<td>June</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>BR 2, BR 407</td>
<td>February</td>
</tr>
<tr>
<td>Gujarat</td>
<td>Kharif</td>
<td>Gujarat Nagi-1</td>
<td>June-July</td>
</tr>
<tr>
<td>Himachal Pradesh (Low altitudes)</td>
<td>Kharif</td>
<td>VL 204, Local</td>
<td>June</td>
</tr>
<tr>
<td>Himachal Pradesh (High altitudes)</td>
<td>Kharif</td>
<td>Locals</td>
<td>May</td>
</tr>
<tr>
<td>Karnataka</td>
<td>Kharif</td>
<td>HR 374, Indaf 9, Indaf-1, Indaf-3, Indaf-8,</td>
<td>April-May</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 911, HR 919</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Late Kharif</td>
<td>PR 202, Indaf-5, Indaf-9, HR 374</td>
<td>August</td>
</tr>
<tr>
<td></td>
<td>Rabi</td>
<td>Indaf-7, Indaf-9</td>
<td>September-October</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>Indaf-5, Indaf-9, HR 911</td>
<td>January-February</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>Kharif</td>
<td>B 11, A 16, E 11, 28-1, 50-1</td>
<td>June</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>Kharif</td>
<td>JNR 852, IE 28, EC 4840, JNR 1008, JNR 981</td>
<td>June-July</td>
</tr>
<tr>
<td>Orissa</td>
<td>Kharif</td>
<td>Dbyasingha, B-4-10-56, Bhudei Local</td>
<td>June</td>
</tr>
<tr>
<td></td>
<td>Rabi</td>
<td>Dbyasingha, B-4-10-56, Bhudei Local</td>
<td>January</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>Nargalpattam</td>
<td>Co 7, Co 10, K 5, K 6, Indaf-5</td>
<td>May-June</td>
</tr>
<tr>
<td></td>
<td>Chitterapatnam</td>
<td>PR 202, Co 11, K 6, K 7, Co 12</td>
<td>April-May</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K 5, K 6, Co 11, Co 12, K 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adipattam</td>
<td>PR 202, K 5 and K 7</td>
<td>May-June</td>
</tr>
<tr>
<td></td>
<td>Purattaspatnam</td>
<td>K 6, Co 11</td>
<td>June-July</td>
</tr>
<tr>
<td>Uttar Pradesh (Plains)</td>
<td>Kharif</td>
<td>Nirmal, T-36b, PES-176</td>
<td>May-June</td>
</tr>
<tr>
<td>Uttar Pradesh (Hills)</td>
<td>Kharif</td>
<td>VL 204, Local</td>
<td>June</td>
</tr>
</tbody>
</table>

Source: Seetharam (1986).
Finger millet is established either by drilling or broadcasting the seeds in the prepared land under dryland conditions; but under irrigated conditions, it is invariably transplanted. Transplanted finger millet has less weed problem and usually yields higher. Transplanting is also advantageous under multiple cropping systems as the land is occupied by the crop for a shorter time.

A medium duration variety of finger millet when sown in the second or third week of July always yielded higher than when sown in August (Ashok et al., 1979). When planting is delayed, establishing the crop by transplanting can help in maintaining the yield level.

<table>
<thead>
<tr>
<th>Method of establishment</th>
<th>3 years average</th>
<th>2 years average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplanted</td>
<td>2650</td>
<td>2565</td>
</tr>
<tr>
<td>Drilled</td>
<td>1330</td>
<td>761</td>
</tr>
</tbody>
</table>

For transplanting, three week old seedlings raised in beds are used. Studies conducted in several locations of the Millet Improvement Project indicated that in a medium duration variety, 25-30 day old seedlings are ideal for transplanting. According to the peasants’ practice, seedlings could be kept in the nursery for a week for every month of the crop’s total life period. Thus, a variety of 120 days duration could be left in the nursery up to four weeks.

Spacing and plant population

Finger millet is often broadcast with heavy seed rate (about 25 kg/ha) and thinned out later by cross cultivation, both lengthwise and breadthwise with the help of tine hoes. However, this results in non-uniform stand and too high a population. An optimum population has been observed to be 400 to 800 thousand plants per ha. Yields decline with higher populations.

When a row spacing of 25 cm is adopted, a plant to plant spacing of 10 cm gives about 400 thousand plants per ha. In a study conducted by Murthy and Hegde (1981), it was observed that the number of tillers in Indaf-5 variety reduced from 3.8 per plant at 270 thousand plants to about 2.1 at 800 thousand plants per ha, but there was no significant difference in yield. It appears that with reduced number of tillers, the contribution from individual earheads
will be more and the total yield remains the same as the contribution of the main shoot and the primary tiller is about 71 per cent of the yield in individual plants (Krishnamurthy, 1973).

Normally 25-30 cm row spacing is recommended for dryland finger millet keeping in view the convenience for intercultivation and weeding. However, studies at Bangalore, have shown that wider rows up to 45 cm gave similar yields as 25 cm row spacing. In four years out of 12, which were low rainfall years, the yields were higher due to wider spacing. But in three wet years, the yields were more in closer spacing. Wider row spacing, apart from having an advantage in intercultivation for a longer period, also helps in accommodating intercrops like soybean.

Manures and fertilizers

Finger millet responds well to N application all over the country. On an average the response varied from 6 to 23 kg per kg N (Gautam et al., 1982). Studies at several centres of the Millet Improvement Project also indicated that the response to N was of the order of 23.1 kg per kg N at low level of 20 kg N which came down to 19.9 kg per kg N at 60 kg N per ha.

Among the forms, Calcium ammonium nitrate (CAN) had advantage over other sources for slightly acidic soils of the south (Ananthanarayana et al. 1971). Neem cake blended with ammonium sulphate and urea gave better results than their straight forms at equivalent N levels (Subbaiah et al., 1982).

The response of finger millet to phosphate application has been favourable. The studies conducted at Bangalore gave a response of 16.3 kg grain per kg P₂O₅ at a low level of 30 kg per ha. This figure reduced to 14.7 at 60 kg P₂O₅ per ha (Anon., 1984).

Response of the crop to potash application was generally lower and was between 6 and 9 kg grain per kg of K₂O applied at levels up to 60 kg K₂O per ha.

The importance of fertilizers in achieving higher yields is well documented. In the absence of adequate fertility in soil, even the high yielding varieties gave yields on par with the locals.

TABLE 3

<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain yield (kg/ha)</th>
<th>Low fertility</th>
<th>Recommended fertilizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local (Hullubele)</td>
<td>1391</td>
<td>1859</td>
<td></td>
</tr>
<tr>
<td>Improved (Indaf-5)</td>
<td>1260</td>
<td>2161</td>
<td></td>
</tr>
</tbody>
</table>

Source: Anonymous (1984).
Fertilizer recommendations vary from State to State. The general recommendation in Karnataka is 50, 37.5, 25 kg N, P₂O₅ and K₂O for dryland and 100:50:50 N, P₂O₅ and K₂O for irrigated conditions. All P₂O₅ and K₂O are to be applied at sowing whereas, nitrogen is applied in split doses. In a study at Bangalore, 50 kg N/ha gave a yield of 2430 kg grain when applied at planting compared to 2650 kg/ha when the same dose was applied in two splits and 2760 kg/ha when applied in three splits. However, it is essential that all the N is applied before flowering (Havanagi and Hegde, 1983).

Seed-cum-fertilizer drills are available for sowing simultaneously both seeds and fertilizers side by side in the same row. This usually resulted in about 30 per cent increase in the grain yield at the same level of fertilizers. Even mixing of seeds and low nitrogen granular fertilizers like DAP was found beneficial. In one of the studies at Bangalore, application of 100 kg DAP per hectare through seed-cum-fertilizer drill resulted in a yield of 2537 kg/ha, whereas the same dose mixed with seeds and drilled gave 2464 kg/ha. When the fertilizer was broadcast and seeds were drilled the yield was only 2056 kg/ha. A slight reduction in population occurred when seeds were mixed with fertilizers, but this did not affect the yield adversely (Anon., 1986).

Application of farm yard manure (FYM) has been observed to help in reducing the requirement of fertilizer nitrogen to obtain the same yield levels. On an average, the yield levels at 10 t FYM/ha were on par with fertilizers alone at 50 per cent of the recommended level (Havanagi and Hegde, 1983). In another study it was observed that a combination of organic manures like FYM, poultry manure or sericulture waste with urea always resulted in a higher yield than any inorganic source independently (Anon., 1983).

Among different forms of biofertilizers, Azospirillum brasilense has been tested with finger millet in seven locations over a period of six years. In the first three years of the study, Azospirillum was used only as a seed treatment and in the subsequent years the seed treatment was combined with FYM.

Based on the studies right from 1980, it is concluded that the seed treatment with Azospirillum has an effect equivalent to the application of 20 kg N/ha (Table 4).

Weed management

Finger millet is grown predominantly as a mixed crop under rainfed conditions during Kharif. Added to this, the practice of broadcasting the seeds commonly followed by the farmers poses difficulties in weed control by intercultivation. Most commonly observed species of weeds with finger millet also belong to the grass family and are difficult to distinguish in the early stages. However, the situations under irrigated conditions where the seedlings are transplanted is entirely different. In a transplanted crop, the land is thoroughly prepared and the seedlings grow faster soon after establishment. This helps in suppressing the weeds.
TABLE 4
Influence of Azospirillum on the grain yield of finger millet

<table>
<thead>
<tr>
<th>Azospirillum for seed treatment (average of two years)</th>
<th>Azospirillum with FYM (Average of 3 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>Yield (kg/ha)</td>
</tr>
<tr>
<td>T1: Control</td>
<td>1653</td>
</tr>
<tr>
<td>T2: Azospirillum (Seed treatment)</td>
<td>1839</td>
</tr>
<tr>
<td>T3: Half the recommended nitrogen only</td>
<td>2226</td>
</tr>
<tr>
<td>T4: T3 + Azospirillum (seed treatment)</td>
<td>2255</td>
</tr>
<tr>
<td>T5: Full dose of recommended N</td>
<td>2440</td>
</tr>
<tr>
<td>T6: T5 + Azospirillum (Seed treatment)</td>
<td>2776</td>
</tr>
</tbody>
</table>

Source: Annual reports of AICMIP for the years 1980-1985.

Effective weed control chemicals for finger millet and their method of application under different agroclimatic situations are yet to be perfected. Therefore, competition with weeds for moisture, nutrients and light in the initial stages is inevitable. However, when the competition is extended beyond 3-4 weeks, substantial reductions in grain yield have been reported (Hegde et al., 1983). In general, the yield reduction was of the order of 48-50 per cent (Patro and Das, 1972; Sundaresh et al., 1975).

Pre-emergence application of nitrofen and neburon at 0.5 to 1.0 kg a.i./ha have been recommended in sole crop of finger millet (Shankaran et al., 1974; Nanjappa and Hosmani, 1986). As a post-emergence application, both in drilled and transplanted finger millet 2, 4-D at 0.5 to 1.0 kg a.i./ha has given effective control of weeds (Lingegowda et al., 1974).

Both in transplanted and directly drilled stands of finger millet, 2-3 intercultivations and one or two hand weedings are needed. Even when chemicals are used for weed control, intercultivation becomes essential to provide a favourable root zone environment.

Water management

Finger millet is one of the hardiest among millets. It requires between 40 and 65 cm water when irrigated at an optimum level of moisture depletion of 50-60 per cent available soil moisture at the surface 30 cm depth of soil (Patil et al., 1969 and Kaliappa et al., 1974). Tillering and pre-flowering stages are the most critical stages with respect to moisture stress (Reddy, 1976). In
general, finger millet needs to be irrigated at an interval of 8-12 days during summer and winter months. But during kharif, 3-4 well timed irrigations are enough to produce as much yield as a crop fully grown under irrigation.

Rainfed finger millet experiences intermittent dry and wet spells. For a successful production of any crop under such situations, efforts are essential to conserve as much rain water as the soil can hold and dispose off the surplus smoothly without causing any erosion. Deep ploughing and intercultivation open up the hard surface crust and improve the rate of infiltration and water holding capacity of soil. Corrugations and furrows at intervals are being followed in this crop which further enhance the opportunity for moisture storage.

Recent recommendations under dryland conditions are to harvest the surplus run-off water in farm ponds and provide one or two irrigations at times of prolonged breaks in rainfall. A study conducted over four years in the dryland project at Bangalore revealed the possibility of increasing the crop yields by 100 per cent and stabilizing the yield of finger millet by providing one or two protective irrigations under unfavourable rainfall situations.

Cropping systems

Under dryland conditions, finger millet is grown during the rainy season. In south India, rows of finger millet are commonly intercropped with other crops like fodder sorghum, field beans, niger, castor and pigeonpea. It is not uncommon to find mixtures of other millets like bajra or little millet in dryland finger millet fields. These intercrop components are sown through separate tubes in a bullock-drawn seed drill along with finger millet simultaneously at an interval of 2.5 to 3 m. Quite often, mustard is sprinkled all over the field.

Finger millet is grown in rotation with other dryland crops like groundnut, horsegram, sorghum, other millets, cotton, tobacco and sesamum. Under irrigated conditions, it is usually grown after paddy in areas where water is not sufficient for second crop of paddy. Finger millet is also grown after sugarcane, potatoes, onions, carrot, chillies, etc. In such cases, the crop is usually transplanted under irrigation as a sole crop.

Under rainfed conditions, growing other crops as mixtures with finger millet is a rule rather than an exception. Under a subsistence system of farming, this appears to be the most acceptable practice. However, with adoption of improved management practices, traditional mixed/intercropping systems are found to be non-remunerative.

As seen from Table 5, traditional intercropping may not be profitable under high fertility levels but it is advisable under low fertility conditions. Further, the same studies indicated that inclusion of fodder intercrops like maize or pearl millet in wider intervals of 7:1 row proportion is better than putting them closer.

Recent studies have shown that finger millet and soybean drilled in alternate rows at 22.5 cm apart can give as much as an entire crop of finger millet (about 2500 kg/ha) with 200-300 kilograms bonus yield of soybean.
TABLE 5
Yield of finger millet as influenced by intercropping and fertility management

<table>
<thead>
<tr>
<th>Level of fertility</th>
<th>No intercrop</th>
<th>Intercropped with fodder sorghum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers level of fertilizers (low fertility)</td>
<td>1093 (Rs. 708)</td>
<td>1057 (Rs. 773)</td>
</tr>
<tr>
<td>Recommended level of fertilizers</td>
<td>1513 (Rs. 1251)</td>
<td>1258 (Rs. 1184)</td>
</tr>
</tbody>
</table>

Source: Hegde et al. (1980).

Note: Figures within the brackets indicate the net income of the whole cropping system including the intercrops.

The traditional system of growing pigeonpea with finger millet as in South India is less profitable due to suppression of pigeonpea crop in the early stages of growth. In order to avoid this suppression and give some lead to pigeon crop, efforts were made to sow pigeon pea in May in paired rows with a spacing of 3.3 m between pairs. Finger millet was sown in the interspace between two such pairs of pigeonpea in the month of July, i.e., after 1½ months of sowing pigeonpea. A furrow is opened between pigeonpea rows to achieve an effective inter-terrace management in the field. Thus the system is a combination of intercropping and inter-terrace management. This system is compared with other systems in Table 6.

TABLE 6
Crop yields as influenced by intercropping of pigeonpea in finger millet

<table>
<thead>
<tr>
<th>Treatments</th>
<th>finger millet</th>
<th>Pigeonpea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Both pigeonpea and finger millet sown in July</td>
<td>2130</td>
<td>275</td>
</tr>
<tr>
<td>2. Pigeonpea sown in May and finger millet in July</td>
<td>1274</td>
<td>1274</td>
</tr>
<tr>
<td>3. Entire finger millet sown in July</td>
<td>2279</td>
<td>—</td>
</tr>
</tbody>
</table>

Source: Dryland Project, Bangalore (Anon., 1984).

The system is already recommended to the farmers and is popularly known as 'paired row technique'. A pigeonpea variety of about 6 months duration and a medium duration finger millet variety of about 110 days are suitable for this type of intercropping.
KODO MILLET (*Paspalum scrobiculatum* L.)

Kodo millet is a long duration crop (110-130 days) compared to other small millets and grows well on shallow as well as deep soils. The seeds have an excellent storage life and can be stored even up to 100 years. Out of the total area of about 2.1 million ha under this crop in India, 1.3 million ha are in Madhya Pradesh.

Being a crop of tribal areas and marginal lands, it did not receive much attention till recently. With the establishment of Paspalum improvement centre at Dindori in Madhya Pradesh in 1979, systematic studies have been initiated on the production technology of the crop.

Seeding time and method of sowing

A population of 600-800 thousand plants per ha appears to be optimum for the crop. This is achieved by adopting a seed rate of about 15 kg/ha and a spacing of 22.5 cm between rows and 5 to 7.5 cm between plants. The observations at Dindori, Madhya Pradesh that a crop sown at 22.5 cm but unthinned within the row and a broadcast field yielded on par, prove that the crop responds to higher population (Table 7).

TABLE 7

Effect of sowing time and plant spacing on the yield of kodo millet

<table>
<thead>
<tr>
<th>Plant spacing</th>
<th>Sowing time</th>
<th>Yield (kg/ha)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unthinned</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.5 x 7.5 cm</td>
<td>22.5 x 5.0 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain Straw</td>
<td>Grain Straw</td>
<td>Grain Straw</td>
</tr>
<tr>
<td>Last week of June to first week of July</td>
<td>1840 4890</td>
<td>1650 3900</td>
<td>1730 4250</td>
</tr>
<tr>
<td>Second week of July</td>
<td>1500 4020</td>
<td>1500 3860</td>
<td>1220 3280</td>
</tr>
<tr>
<td>Last week of July to first week of August</td>
<td>550 2330</td>
<td>530 2370</td>
<td>440 2120</td>
</tr>
<tr>
<td>Mean</td>
<td>1300 3450</td>
<td>1230 3380</td>
<td>1130 3220</td>
</tr>
</tbody>
</table>

Source: Annual reports of the IDRC Centre, Dindori (MP) for the years 1981, 1982 and 1983.

Kodo millet responded very favourably to dry seeding where the rains are assured in June. Sowing 10 days before the onset of monsoon resulted in the highest grain and straw yield compared to any sowings taken after the onset of monsoon. However, this is not likely to be universal. At Dindori, the June rains are certain and the monsoon rains cease by the end of September. Under such situations, delayed sowing subjected the crop to stress at later stages. Further, early sowing had comparatively lesser incidence of dead hearts caused by shootfly damage.
Cropping systems

Kodo millet is mixed with cereals (finger millet and maize) and oilseeds (niger, groundnut and soybean) in the proportions of 1:1 and 2:1. A combination of kodo millet with groundnut in the row ratio of 1:1 was found better than a single crop of the millet. The combination yielded 360 kg grain of the millet and 680 kg groundnut pods per hectare as against 940 kg grain/ha of the millet under sole crop system.

Response to manures and fertilizers

The crop responds well to a moderate application of N and P₂O₅. Response to added potash has not been observed.

<table>
<thead>
<tr>
<th>Levels of N (kg/ha)</th>
<th>0 P₂O₅ (kg/ha)</th>
<th>20 kg P₂O₅ (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1087</td>
<td>1240</td>
</tr>
<tr>
<td>20</td>
<td>1603</td>
<td>1673</td>
</tr>
<tr>
<td>40</td>
<td>1760</td>
<td>2306</td>
</tr>
<tr>
<td>60</td>
<td>1953</td>
<td>1963</td>
</tr>
</tbody>
</table>

In studies conducted by Kaushik and Gautam (1981), the yield with N application at 60 kg/ha was 2.32 t/ha compared to 1.41 t/ha without N. The optimum dose was worked out to be 54 kg N/ha. In another study at Bangalore, Linge Gowda et al. (1977) observed highest response at 25 kg N with a grain yield of 1.63 t/ha compared to 0.85 t/ha without any nitrogen.

The crop responded favourably to the application of FYM with about 200 kg grain for every 5 tons of the manure. Even though the crop gave an additional yield of 150 kg/ha with *Azospirillum* seed treatment, the response was not statistically significant. It is concluded that there is a need to identify more efficient strains of *Azospirillum* specific to *Paspalum*.

Intercropping systems

During kharif season, millets are grown predominantly in hilly tracts either as pure or mixed crops with sesame, niger and pigeonpea. Shifting cultivation is also in vogue where niger and kodo mixtures are grown for 3-4 years then giving a rest, for 2-3 years. Systematic studies to identify an acceptable intercropping system are meagre.
A trial was conducted at Rewa, Madhya Pradesh involving three intercrops with kodo viz., greengram, sesamem and soybean. As observed from this two year trial, the grain yield of kodo millet was higher when intercropped with greengram.

It appears that there is a good scope for intercropping with kodo millet, especially with long duration pulses like pigeonpea.

FOXTAIL MILLET (Setaria italica BEAUV.)

Foxtail millet is essentially a grain crop of about 100 days duration suited to conditions of low and moderate rainfall ranging from 500 to 700 mm. It can be grown in higher altitudes (up to 1830 m above MSL) and is an important foodgrain in the foothills of Himalayas. It is a crop grown almost throughout the year in different parts of the country.

In India, cultivation of foxtail millet is mainly confined to the lower Deccan Plateau including high lands of Andhra Pradesh, Karnataka and Tamil Nadu, which account for about 90 per cent of the area in the country.

Foxtail millet is mostly grown mixed with other crops like cotton, castor, pigeon pea, bajra, groundnut and finger millet. It is also grown as a pure crop, particularly in black cotton soils where it is followed by a rabi crop like coriander in favourable seasons or by safflower or horsegram in years of less rainfall. In the hilly regions of North India, foxtail millet is sown with other kharif crops and matures in about 2 months, providing food during scarcity periods. In Punjab, Himachal Pradesh and U.P. it is grown from June-July to September-October either as a border or as a mixed crop with several kharif crops.

Foxtail or Italian millet may well have unrealized potential and the Chinese have claimed exceptionally high yields sometimes exceeding 11,000 kg/ha (Rachie, 1975). However, in India the yield of rainfed pure crop varies from 400-800 kg of grain and 1000-2000 kg of straw per ha. Generally cooked like rice or made into porridge, it makes a food which is considered to be very nutritious. The grain must be poundered or otherwise husked before cooking to remove the tightly enclosed glume.

Time of sowing

Early sowing in the monsoon always produces higher yields than later sowings. The longer duration varieties gave higher fodder yield when sown early, as shown in Table 9.

The reduction in yield due to delayed planting was not compensated by increasing the population. Studies conducted at Dholi in Bihar and at Nandyal in Andhra Pradesh revealed that a population density between 440 (22.5 × 10 cm²) and 890 thousand plants per ha (22.5 × 5 cm²) did not vary the yields but the sowing dates had significant effects. Dry seeding in the month
TABLE 9
Effect of sowing time on the yield of foxtail millet

<table>
<thead>
<tr>
<th>Time of sowing</th>
<th>Yield (kg/ha)</th>
<th></th>
<th>Time of sowing</th>
<th>Yield (kg/ha)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain</td>
<td>Straw</td>
<td></td>
<td>Grain</td>
<td>Straw</td>
</tr>
<tr>
<td>July 22</td>
<td>2390</td>
<td>5420</td>
<td>July 8</td>
<td>1770</td>
<td>5030</td>
</tr>
<tr>
<td>July 31</td>
<td>1630</td>
<td>4810</td>
<td>July 18</td>
<td>1730</td>
<td>4170</td>
</tr>
<tr>
<td>August 8</td>
<td>1370</td>
<td>4810</td>
<td>August 12</td>
<td>1230</td>
<td>3930</td>
</tr>
<tr>
<td>August 19</td>
<td>960</td>
<td>3850</td>
<td>August 22</td>
<td>1300</td>
<td>3530</td>
</tr>
<tr>
<td>C.D. at 5%</td>
<td>220</td>
<td>580</td>
<td>C.D. at 5%</td>
<td>170</td>
<td>220</td>
</tr>
</tbody>
</table>

Source: Annual reports of the IDRC Millet Centre, Nandyal, Andhra Pradesh.

of June was as advantageous as sowing soon after the receipt of monsoons in July.

Even during summer under irrigation at Nandyal, the crop showed a positive response to early sowing in January. Sowing on 1st January gave 3330 kg grain/ha which reduced to 2630 kg/ha when sown on 31st January, whereas sowing on 20th of February gave only 1050 kg/ha. Tiller number per metre length reduced from 48.3 for January 1st planted to 19.0/m for February 20th sowing.

Response to fertilizers
The response of foxtail millet to the application of nitrogen was positive up to 40 kg N/ha at Dholi. Averaged over three varieties, the response per kg of N was 31 kg up to 20 kg N, at 40 kg N the response decreased to 23 kg grain per kg nitrogen. Further studies at Nandyal showed that the response could be of the order of 28 kg per kg N, up to a level of 60 kg N/ha.

Similar studies in Tamil Nadu during 1972 and 1973 showed that on an average, 30 kg N/ha increased the yield from 590 kg to 1005 kg/ha (Gautam, 1976). Response to P application was not as marked as in case of N. Studies conducted at Nandyal showed a response of about 6.5 kg grain per kg of P$_2$O$_5$ up to 20 kg P$_2$O$_5$/ha.

In similar studies conducted in Karnataka, a combination of 60 kg N + 20 kg P$_2$O$_5$ gave the highest yield of 1.32 t/ha compared to 0.68 t/ha when fertilizers were not applied (Hosmani et al., 1975).

Response to biofertilizers
A two year trial conducted at Nandyal indicated that foxtail millet (Var. Arjuna) gave higher yield with Azospirillum brasiliense especially in the presence of nitrogen. The influence was both on grain as well as straw through increase in the number of productive tillers, as shown in Table 10.
TABLE 10
Effect of *Azospirillum* and nitrogen on the yield of foxtail millet

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1980</th>
<th>1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1750</td>
<td>600</td>
</tr>
<tr>
<td>Azospirillum only</td>
<td>1750</td>
<td>800</td>
</tr>
<tr>
<td>10 kg N/ha</td>
<td>2120</td>
<td>1100</td>
</tr>
<tr>
<td>20 kg N/ha</td>
<td>2400</td>
<td>1310</td>
</tr>
<tr>
<td>40 kg N/ha</td>
<td>2430</td>
<td>—</td>
</tr>
<tr>
<td>10 kg N + Azospirillum</td>
<td>2700</td>
<td>1430</td>
</tr>
<tr>
<td>20 kg N + Azospirillum</td>
<td>2750</td>
<td>1800</td>
</tr>
<tr>
<td>40 kg N + Azospirillum</td>
<td>3500</td>
<td>—</td>
</tr>
<tr>
<td>C.D. at 5%</td>
<td>690</td>
<td>320</td>
</tr>
</tbody>
</table>

Source: Annual report of the IDRC Millet Centre, Nandyal.

Similar studies in Karnataka showed that foxtail millet responded to the treatment with *Azotobacter chroococcum*. The yields with 0, 30 and 60 kg N/ha were 0.85, 1.10 and 1.25 t/ha respectively. The corresponding yields with *Azotobacter* treatment were 0.93, 1.15 and 1.31 t/ha (Raj *et al.*, 1979).

Organic manures in the form of FYM had a significant influence on the grain yield of Setaria at Nandyal. It appears that there was a significant interaction of FYM and fertilizer nitrogen as seen from Table 11. It is interesting to note that 60 kg N/ha along with 10 t FYM gave as high as 2850 kg grain/ha compared to 380 kg/ha under control (650 per cent increase).

TABLE 11
Effect of organic and inorganic fertilizers on foxtail millet

<table>
<thead>
<tr>
<th>Levels of N (kg/ha)</th>
<th>0</th>
<th>Level of FYM 5 t/ha</th>
<th>10 t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>380</td>
<td>580</td>
<td>830</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>1100</td>
<td>1260</td>
</tr>
<tr>
<td>40</td>
<td>1490</td>
<td>1830</td>
<td>2220</td>
</tr>
<tr>
<td>60</td>
<td>1240</td>
<td>2520</td>
<td>2850</td>
</tr>
</tbody>
</table>

Source: Annual report of the IDRC Millet Centre, Nandyal.

Cropping systems

Foxtail millet is commonly grown as a mixed crop either with cotton or pigeon pea. An experiment conducted for two years at Nandyal showed that...
2 rows of Setaria and 1 row of cotton produced higher returns compared to entire crop of Setaria.

At Hagari, it was established that Setaria and cotton could be advantageously grown at 12:6 or 6:3 row proportions as strip crops for effective soil conservation (Rao et al., 1975). Foxtail millet was observed to be a good soil binder with an ant erosion value of 5.7 compared to 1.6 for cotton.

LITTLE MILLET (*Panicum miliare* LAM) (Renamed *P. sumatrense* ROTH)

Little millet or sama, is a quick growing short duration cereal which withstands both drought and water logging. As in other small millets, its cultivation is restricted to tribal areas and marginal lands. Frequently grown as a monocrop but often mixed with other cereals, millets, pulses or oilseeds. Little millet in early kharif followed by niger is a common sequence in Orissa.

The little millet improvement centre started functioning in 1979 and is located at Semiliguda in the State of Orissa.

Time of sowing and plant density

The seeds are often broadcast and sometimes drilled with the onset of monsoon in the month of June. Systematic studies from 1979 to 1983 at Semiliguda have shown that early sowing in June gave higher grain as well as straw yield compared to later sowings. The practice resulted in higher number of effective tillers and reduced the incidence of midge.

TABLE 12

Yield of little millet at Semiliguda as influenced by date of planting

<table>
<thead>
<tr>
<th>Variety</th>
<th>Koraput</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield (kg/ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sowing time</td>
<td>1979</td>
<td>1980</td>
</tr>
<tr>
<td>June first fortnight</td>
<td>1070</td>
<td>740</td>
</tr>
<tr>
<td>June second fortnight</td>
<td>1000</td>
<td>240</td>
</tr>
<tr>
<td>July first fortnight</td>
<td>240</td>
<td>160</td>
</tr>
<tr>
<td>July second fortnight</td>
<td>210</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Annual Reports of the IDRC Millet Centre, Semiliguda.

When the crop was sown in first fortnight of June, a higher plant density of about 890,000 plants per ha, gave higher yield compared with either lower populations or very high populations which were not thinned. Planting later than first fortnight of June resulted in lower yields, but there was no significant
interaction between sowing date and plant population. Highest yields under all dates of sowing were obtained at 890,000 plants per ha.

Response to fertilizers

A moderate application of 20 kg N and 20 kg P$_2$O$_5$/ha was optimum for little millet, as shown in Table 13.

TABLE 13

Grain and straw yield of little millet as influenced by fertilizer application (averaged over three varieties and two seasons, 1980 and 1981)

<table>
<thead>
<tr>
<th>Levels of N (kg/ha)</th>
<th>Grain Yield (kg/ha)</th>
<th>Straw Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P$_0$</td>
<td>P$_{20}$</td>
</tr>
<tr>
<td>0</td>
<td>767</td>
<td>922</td>
</tr>
<tr>
<td>20</td>
<td>830</td>
<td>1242</td>
</tr>
<tr>
<td>40</td>
<td>958</td>
<td>1213</td>
</tr>
<tr>
<td>60</td>
<td>848</td>
<td>1143</td>
</tr>
</tbody>
</table>

Source: Annual Progress Report of IDRC Millet Centre, Semiliguda.

It is interesting to note that the trends repeated over number of years and trials in several other locations also resulted in the same level of fertilizers to be optimum and profitable. It was further observed that nitrogen should be applied in two equal splits for higher grain production.

Farm yard manure was beneficial and at 10 t/ha was able to replace about 20 kg N.

Biofertilizers

The influence of biofertilizers especially *Azospirillum* was studied on little millet at Semiliguda, Ranchi in Bihar, and Dindori in Madhya Pradesh. The results of the trials are presented in Table 14. Based on these results it was concluded that seed treatment with *Azospirillum* saved 4-10 kg N/ha. Applying *Azospirillum* along with FYM did not increase the yield significantly over seed treatment alone.

Cropping systems

Mixing of pigeonpea seeds with little millet is a common practice with the tribal people. The proportion of 1:1 to 1:3 between pigeonpea and little millet resulted in higher monetary returns than growing little millet as an entire crop. Mixing of little millet (75 per cent) and black gram (25 per cent) resulted in the maximum grain production of 1530 kg/ha compared to entire little millet with 730 kg/ha during 1983 at Ranchi.
TABLE 14
Effect of *Azospirillum brasilense* on the yield of little millet

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grain yield (kg/ha)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semiliguda</td>
<td>Ranchi</td>
<td>Dindori</td>
</tr>
<tr>
<td></td>
<td>(Average of 2 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>700</td>
<td>1110</td>
<td>1140</td>
</tr>
<tr>
<td>Azospirillum only</td>
<td>800</td>
<td>1020</td>
<td>1710</td>
</tr>
<tr>
<td>10 kg N/ha</td>
<td>970</td>
<td>-</td>
<td>1710</td>
</tr>
<tr>
<td>20 kg N/ha</td>
<td>1310</td>
<td>1110</td>
<td>1990</td>
</tr>
<tr>
<td>10 kg N + Azospirillum</td>
<td>1180</td>
<td>1110</td>
<td>1840</td>
</tr>
<tr>
<td>20 kg N + Azospirillum</td>
<td>1450</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Intercropping of pigeonpea has been tried in different row ratios. A two year trial at Semiliguda with pigeonpea showed that the total monetary return with intercropping was more than an entire crop of little millet.

PROSO MILLET (*Panicum miliaceum* L.)

Proso millet is a quick growing short duration cereal with low moisture requirements. It can be grown throughout the year. Two quick crops of proso millet are taken during March-June under irrigation in Bihar. In South India, proso millet is raised during rabi in black soils on stored soil moisture. Farmers usually grow this crop on residual fertility especially on fields vacated by potato, peas, mustard and wheat. An intensive work in proso millet agronomy was taken up at Dholi in Bihar under the proso millet improvement programme.

Sowing time

Proso millet crop is usually planted by broadcasting. Under experimental conditions, however, line planting has been observed to do better. Row to row distance should be kept at 22 cm and plant to plant 7.5 cm (Choudhari and Rai, 1982). This would roughly need a seed rate of 10-12 kg/ha. For better germination the seeds should be soaked for 24 hours in water and should not be planted deeper than 4 cm. Planting dates vary from February to middle of April (Summer season). However, the optimum sowing time has been identified to be the middle of March as evidenced by the studies conducted at Dholi.

Suitable varieties

A three year study conducted at Dholi brought out that BR 7, an improved variety, performed better than the rest recommended in the region. The performance of BR 7 was uniformly superior to the other entries in all the years under trial.
TABLE 15
Performance of selected proso millet varieties

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 4872</td>
<td>Coimbatore</td>
<td>1810</td>
</tr>
<tr>
<td>MS 1914</td>
<td>Coimbatore</td>
<td>1770</td>
</tr>
<tr>
<td>PM 29</td>
<td>Jodhpur</td>
<td>1870</td>
</tr>
<tr>
<td>Shyamcheena</td>
<td>Dholi</td>
<td>1960</td>
</tr>
<tr>
<td>BR 7</td>
<td>Dholi</td>
<td>2210</td>
</tr>
<tr>
<td>Local</td>
<td>Dholi</td>
<td>1750</td>
</tr>
</tbody>
</table>

Source: Annual Progress Report of the IDRC Millet Centre, Dholi.

Fertilizer requirement
The crop responded favourably to the application of nitrogen at low levels. Under experimental conditions at Dholi, the yield increased from 1350 kg/ha without any nitrogen to 1840 kg/ha with nitrogen applied at 40 kg/ha. While there was no significant response to application of potash, the response to P application up to 40 kg P₂O₅/ha was significant. For better effects, all the P should be applied as basal, whereas, N should be applied in two equal splits at sowing and 35-40 days after sowing.

Irrigations
Since proso millet is basically a summer crop in Bihar, irrigation is crucial for obtaining high yields. Usually a total of three irrigations are required for February planted crop, four for March and five for April planted crops. Flowering and grain filling stages are critical and sufficient moisture should be there in the field at this time (Choudhari and Rai, 1982).

Biofertilizers
The response to the application of Azospirillum was favourable either through seed treatment or through FYM. However, the differences were not significant.

Intercropping
The possibility of sowing proso millet + pigeonpea as intercrops in September (post-monsoon season) followed by proso millet in summer (March sowing) was experimented. Another system extensively tried was with greengram in different row proportions. Though the systems brought higher returns than proso millet alone, the yield levels of both the component crops were appreciably lower in intercropping.
BARNYARD MILLET (*Echinochloa frumentacea* LINK.) (Renamed *E. colona*)

The cultivation of barnyard millet or Sawan dates back to ancient times. Barnyard millet is grown during kharif in shallow soils with low moisture holding capacity while rice is planted in deep soils with better moisture availability. Frequently rice and barnyard millet are found in the same field.

The grains of barnyard millet are used as a staple food and the dehulled grains are cooked just like rice. Its stover is an important source of fodder for animals during winter months. The crop is cultivated in the states of Madhya Pradesh, Maharashtra and Tamil Nadu in India. Barnyard millet is one of the most important millets in the hills of Uttar Pradesh occupying an area of about 200 thousand ha. The barnyard millet improvement centre is located at Almora, Centre for Hill Agriculture in Uttar Pradesh which started functioning on June 1, 1979.

Planting time

Barnyard millet is grown as a kharif crop under rainfed conditions. To provide good amount of moisture throughout the growth period, earliest opportunity is taken to sow the crop and even dry seeding is in practice.

Sowing from March up to the end of May resulted in similar yields. When sowings were delayed till the middle of June there was a slight reduction. However, with short duration varieties like VL-8, the sowing could be delayed up to the middle of June.

Studies at Kanke in Bihar revealed that sowing with the onset of monsoon gave the highest yield. Similar studies at Dholi showed that the sowings could be delayed till the first week of July but further delay reduced the yield. At higher populations the reduction was small, indicating that there exists a possibility of maintaining the yield even when sown late.

Planting density

Barnyard millet has tillering ability, therefore the difference in yield over a narrow range of population is not significant. A trial conducted at Almora for three years from 1979 showed that there was no difference in yield due to variations in row spacing from 20 to 30 cm and inter-row spacing from 10 to 25 cm. Thus a population range of 133,000 to 500,000 plants per ha resulted in similar yields. On the basis of these results, an interrow spacing of 20-25 cm and an intra-row spacing of 10-15 cm is recommended for Almora region. Studies at Dholi for three years (1981 to 1983) indicated that a closer spacing of 22.5 x 5 cm (890,000 plants/ha) produced higher yields than wider spacings.

Method of seeding

Even though barnyard millet can be established by broadcasting, drilling the seeds in the recommended row spacing of 25 cm, or transplanting yielded
more than any other method of establishment. This is shown in Table 16 using the variety VL-11.

<table>
<thead>
<tr>
<th>Planting method</th>
<th>No fertilizers</th>
<th>Recommended fertilizers</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcasting</td>
<td>1270</td>
<td>2100</td>
<td>1680</td>
</tr>
<tr>
<td>Line sowing</td>
<td>1780</td>
<td>2770</td>
<td>2270</td>
</tr>
<tr>
<td>Transplanting</td>
<td>1860</td>
<td>3160</td>
<td>2510</td>
</tr>
</tbody>
</table>

Source: Annual Progress Report of the IDRC Millet Centre, Almora.

It is evident from the foregoing table that line sowing should be encouraged in barnyard millet.

Fertilizer application

The crop responds to the application of fertilizers especially N and P. Systematic studies carried out at Almora, Dholi and Rewa since 1979, indicated that in general, a dose of 40 kg N and 20 kg P₂O₅ per ha is adequate for a rainfed crop of barnyard millet.

A good response was observed on the farmers field to the application of N up to 40 kg per ha. On an average of two years, the yield was 2830 kg/ha with 40 kg N to rainfed barnyard millet compared to 1390 kg/ha without any fertilizer nitrogen. Application of the recommended level of nitrogen in two equal splits, 50 per cent at sowing and 50 per cent at tillering stage, produced maximum grain yield.

Fertilizer application along with FYM is beneficial and FYM helped in reducing the nitrogen requirement of the crop.

Weed management

Keeping the field weed free from the initial stages of crop growth was found essential to achieve a higher yield. If the weeds are left in the field beyond 30 days, there was a drastic reduction in the yield as shown in Table 17.

Effective chemicals may have to be identified to keep the land free of weeds at earlier periods of crop growth.

Crop sequences and intercropping

The traditional practice of finger millet fallow-barnyard millet-wheat was identified to be less efficient as the land is left fallow in rabi after harvesting
B.R. Hegde & B.K. Linge Gowda 231

TABLE 17
Effect of the time of first weeding on the yield of barnyard millet

<table>
<thead>
<tr>
<th>Time of first weeding</th>
<th>1981</th>
<th>1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 DAS</td>
<td>680</td>
<td>1600</td>
</tr>
<tr>
<td>45 DAS</td>
<td>720</td>
<td>770</td>
</tr>
<tr>
<td>60 DAS</td>
<td>410</td>
<td>620</td>
</tr>
<tr>
<td>75 DAS</td>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>No weeding till harvest</td>
<td>40</td>
<td>330</td>
</tr>
</tbody>
</table>

Source: Annual reports of the IDRC Millet Centre, Almora.

finger millet. Instead, a rotation of barnyard millet-pea-barnyard millet-wheat, or Echinochloa--Chick pea were found to be advantageous both for total yields and total returns (in place of chick pea, lentil or finger millet may be used). Not many systematic studies are available on the intercropping and mixed cropping with this crop.

OUTLOOK FOR SMALL MILLETS

Small millets have an untapped potential under adverse soil and climatic conditions. Even though the area under small millets is slowly decreasing, there will be still about 6 million hectares under small millets in India where other crops have less chance of adaptation.

Because of their comparative photoinsensitive nature, short growing season and low moisture demand, millets can be very well fitted into multiple cropping systems both under irrigation as well as dry farming conditions. During scarcity years they can provide nutritious grain as well as valuable fodder in a short span of time. Their long storability under ordinary conditions has made them ‘famine reserves’. This aspect is perhaps the most important for Indian agriculture where the crop production suffers due to the vagaries of the monsoon. There are types to suit a wide range of rainfall situations which can be used for mid-season corrections when rains are delayed.

The review of the work done in India discussed in the previous pages, has brought out the potential of several millets in achieving higher yields. Adoption of simple agronomic practices like timely sowing of recommended varieties, fertilizer application at moderate levels, weeding and intercultivation could increase the yield level by 200 to 300 per cent. Not much has been achieved in identifying acceptable cropping systems to suit different agroclimatic situations. Further, research efforts are concentrated to only a few centres even though the millets are cultivated in almost all the states under contrasting climatic conditions. Research efforts need to be intensified in all the regions of their production to provide location specific recommendations.
<table>
<thead>
<tr>
<th>State</th>
<th>Kodo millet</th>
<th>Foxtail millet</th>
<th>Little millet</th>
<th>Proso millet</th>
<th>Barnyard millet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>PSC 10</td>
<td>Arjuna, SIA 326, Chitra</td>
<td>Co 1, Co 2</td>
<td>Varada</td>
<td>Local, Co 1</td>
</tr>
<tr>
<td>Bihar</td>
<td>—</td>
<td>Local, SIA 326</td>
<td>V 15, V 17</td>
<td>BR 7, Ramcheena, Shyam Cheena</td>
<td>RAU 2, RAU 3, RAU 9</td>
</tr>
<tr>
<td>Karnataka</td>
<td>PSC 1, PSC 2, JNK 364</td>
<td>K 221-1, RS-118</td>
<td>Co 1, Co 2, PRC 3</td>
<td>Co 3</td>
<td>—</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>—</td>
<td>Arjuna, SIC 3</td>
<td>—</td>
<td>Varada, No. 11</td>
<td>—</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>IPS 147-1, RPS 41, Kehapur, RPS 123, JNK 364, PSC 1, PSC 2, RPS 62-3</td>
<td>—</td>
<td>Dindori-1, Dindori-2, PRC 3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Orissa</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>Co 2, K-1</td>
<td>Co 4, Co 5, K 2</td>
<td>Co 1, Co 2, K1</td>
<td>K 1, Co 2, Co 3</td>
<td>K 2, Co 1</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>PSC 1, PSC 2</td>
<td>—</td>
<td>VL 5, VL 7</td>
<td>BR 7, Ram Cheena, Shyam Cheena</td>
<td>VL 8, VL 11, Anurag</td>
</tr>
</tbody>
</table>
Millet grains are normally consumed in the areas of their production and very little finds its way to the market. Nevertheless, their place in industrial uses and livestock feeds is already well established. Estimations by the National Commission on Agriculture, indicate that the demand for small millet grains, excepting finger millet, is not likely to increase due to availability of other preferred cereals and the declining trend in area under these crops is likely to continue. It means that all out efforts are needed to increase the production in the existing area by adopting improved varieties and management practices.

SUMMARY

Intensive research was started on various aspects of millet production during the year 1969 under the auspices of the All India Coordinated Millet Improvement Project. Five special centres were established later in 1979 for the improvement of small millets, viz., kodo millet, foxtail millet, little millet, proso millet and barnyard millet under the assistance of International Development Research Centre (IDRC), Canada. Research efforts at these centres were concentrated mainly in the fields of breeding, agronomy, entomology and pathology.

As a result of intensive efforts, the national yield level of finger millet has been raised from 700 kg/ha in 1949-50 to 1160 kg/ha during 1983-84. In case of other small millets, national yield has increased from 421 kg/ha to 461 kg/ha during the same period. The quantum jump in case of finger millet has been made possible through the breeding of varieties to suit different agroclimatic conditions and seasons of sowing, fertilizer application at moderate levels, and changing over from traditional intercropping systems to improved systems. In other small millets, traditional practices are still widely adopted in the absence of more profitable and acceptable cropping systems. However a number of improved varieties have been released, as shown in Table 18.

Cultivation of millets in India is restricted mainly to the poorer sections of the society and optimum production technology is rarely adopted. Large numbers of farmers still practise broadcasting to establish the crop, even when improved seed drills are available. Adoption of this primitive practice comes in the way of intercultivation and effective weed control. Similarly, the traditional systems of mixed cropping are found suitable only for subsistence farming. For higher productivity either a sole crop or an improved intercropping system has to be adopted.
REFERENCES

DISEASES OF SMALL MILLETS AND THEIR MANAGEMENT IN INDIA

S. Viswanath and A. Seetharam

INTRODUCTION

The principal members of the small millets group are finger millet or ragi (Eleusine coracana), Italian or foxtail millet (Setaria italica), common or proso millet (Panicum miliaceum), little millet (Panicum miliare) (renamed P. sumatrense) kodo millet (Paspalum scrobiculatum) and barnyard millet (Echinochloa frumentacea) renamed E. colona. All these are cultivated in one or more states in India and occupy 4.5 per cent of the total cultivated area. Many diseases affect these millets and cause enormous losses which in the aggregate, may account for millions of rupees. The important diseases affecting each of these millets are described under each crop.

FINGER MILLET DISEASES

Ragi, one of the millets grown on a large area in India, is attacked by many diseases caused by fungal, bacterial and viral pathogens. They are blast, helminthosporiose, smut, downy mildew, foot rot, bacterial leaf spot, bacterial wilt, mottle streak and streak virus.

Blast

Of the several diseases that affect ragi, blast caused by Pyricularia grisea is the most serious one causing considerable grain loss in many ragi growing regions. The disease occurs almost every year during rainy season but the extent of crop loss depends on the severity and the time of onset of disease. Environmental conditions particularly rainfall, temperature and humidity are the most important pre-disposing factors on the severity of blast. According to McRae (1922) the grain loss due to blast could be over 56 per cent, while
Venkatarayan (1947) reported more than 80 per cent yield loss in old Mysore State. In order to get some insight on the disease intensity and extent of annual crop loss due to blast, a study was undertaken during 1980 at five locations and the data are presented in Table 1.

TABLE 1

Blast incidence and grain yield loss in finger millet at different locations in India

<table>
<thead>
<tr>
<th>Locations</th>
<th>Blast incidence (per cent)</th>
<th>Grain yield loss (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neck blast</td>
<td>Finger blast</td>
</tr>
<tr>
<td>Almora</td>
<td>40.0</td>
<td>46.2</td>
</tr>
<tr>
<td>Bangalore</td>
<td>8.1</td>
<td>29.3</td>
</tr>
<tr>
<td>Dholi</td>
<td>52.5</td>
<td>8.3</td>
</tr>
<tr>
<td>Jabalpur</td>
<td>70.1</td>
<td>22.4</td>
</tr>
<tr>
<td>Kovilpatti</td>
<td>35.2</td>
<td>15.3</td>
</tr>
<tr>
<td>Mean</td>
<td>41.2</td>
<td>24.2</td>
</tr>
</tbody>
</table>

The pathogen can infect the crop at all stages, from seedling to post-flowering phase. The symptoms at the seedling and tillering stage are the appearance of small brown, circular to elongated spots on leaves which eventually develop into large elongated or spindle shaped areas, the centre of the spots being greyish. The spots may coalesce to involve a large area of the leaf blade.

Rath and Mishra (1975) reported that neck infection causes significant loss in grain number, grain weight and significant increase in spikelet sterility. However, the crop loss will be greater when the disease appears on the neck and ears during flowering and grain development phase. At this stage the disease may appear on peduncle and/or on finger causing neck and finger blast respectively. Depending on the time and severity of infection the infected ears become completely chaffy or produce shrivelled grains.

The pathogen harbours in glumes, straw as well as on some of the graminaceous weeds. The seeds also have been found to carry the pathogen in the pericarp and endosperm. But embryo infection has not been observed. A temperature of 25-30°C, humidity of 90 per cent and above, cloudy days with intermittent rainfall, are favourable for the rapid spread of the disease. The disease prevails from the month of May to September, but it may extend even up to November, when the favourable conditions are prolonged (Anonymous, 1979). The maximum disease incidence has been observed in the crop sown in the month of August (Table 2).

The fungus spreads mainly by air borne conidia. The initial inoculum probably coming from weeds or some cereal plants acting as collateral hosts. The fungus may also persist in plant debris and to some extent in the shrivelled
TABLE 2
Seasonal incidence of neck and finger blast

<table>
<thead>
<tr>
<th>Sowing date</th>
<th>Neck blast</th>
<th>Finger blast</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 22nd</td>
<td>1.6</td>
<td>5.7</td>
</tr>
<tr>
<td>July 7th</td>
<td>4.3</td>
<td>8.3</td>
</tr>
<tr>
<td>July 22nd</td>
<td>11.4</td>
<td>23.5</td>
</tr>
<tr>
<td>August 7th</td>
<td>46.3</td>
<td>72.6</td>
</tr>
<tr>
<td>August 22nd</td>
<td>31.3</td>
<td>60.4</td>
</tr>
<tr>
<td>September 22nd</td>
<td>12.0</td>
<td>52.1</td>
</tr>
<tr>
<td>October 22nd</td>
<td>1.8</td>
<td>2.6</td>
</tr>
<tr>
<td>November 22nd</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>December 22nd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>January 22nd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>February 22nd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>March 22nd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>April 22nd</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>May 22nd</td>
<td>4.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

grains i.e. from the infected ears which give rise to the initial infection in the nursery from where it may spread to the main field.

Control of the disease by using chemicals has shown that spraying of mancozeb or carbendazin or kitazin once at the seedling stage and twice at the earhead stage reduces the disease incidence. This was found to be economical also.

In addition to the chemical control, evolution of varieties with inbuilt genetic resistance is the best means of combating disease problems in any crop. Such an approach is more relevant in a crop like, ragi which is predominantly grown by poor and marginal farmers who have little means of controlling diseases through chemicals. Almost all cultivars, both local and improved, presently under cultivation are susceptible to blast disease though the level of susceptibility reaction varies from cultivar to cultivar. So, breeding for blast resistance assumes greater importance in ragi. The success of such a programme depends on the identification of stable resistant sources and its subsequent utilization in breeding. As a first step in this direction, 1941 of the available 4500 germplasm, accessions were evaluated under field conditions with high disease prevalence. The results are given in Table 3 (Anonymous, 1984). Twenty eight entries showed resistant reaction for both neck and finger blast, and only 9 entries showed combined resistant reaction for leaf, neck and finger blast as shown in Table 4.
<table>
<thead>
<tr>
<th>Disease reaction</th>
<th>Leaf blast</th>
<th>Neck blast</th>
<th>Finger blast</th>
<th>Neck and finger blast*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of entries</td>
<td>% entries</td>
<td>No. of entries</td>
<td>% entries</td>
</tr>
<tr>
<td>Resistant</td>
<td>18</td>
<td>0.93</td>
<td>281</td>
<td>14.48</td>
</tr>
<tr>
<td>Moderately resistant</td>
<td>109</td>
<td>5.62</td>
<td>420</td>
<td>21.64</td>
</tr>
<tr>
<td>Moderately susceptible</td>
<td>310</td>
<td>15.98</td>
<td>397</td>
<td>20.46</td>
</tr>
<tr>
<td>Susceptible</td>
<td>671</td>
<td>34.57</td>
<td>431</td>
<td>22.21</td>
</tr>
<tr>
<td>Highly susceptible</td>
<td>833</td>
<td>42.92</td>
<td>412</td>
<td>21.23</td>
</tr>
<tr>
<td>Total</td>
<td>1941</td>
<td>1941</td>
<td>1941</td>
<td>—</td>
</tr>
</tbody>
</table>

*Entries showing moderate resistant reaction for both neck and finger blast only have been considered.
TABLE 4
Reaction of entries showing resistant reaction to both neck and finger blast

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Entry No.</th>
<th>Leaf blast (grade)</th>
<th>Neck blast (% incidence)</th>
<th>Finger blast (% incidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GE 75</td>
<td>6</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>156</td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>158</td>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>243</td>
<td>7</td>
<td>0.00</td>
<td>0.59</td>
</tr>
<tr>
<td>5</td>
<td>281</td>
<td>4</td>
<td>0.00</td>
<td>0.43</td>
</tr>
<tr>
<td>6</td>
<td>396</td>
<td>6</td>
<td>0.00</td>
<td>0.57</td>
</tr>
<tr>
<td>7</td>
<td>406</td>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>568</td>
<td>2</td>
<td>0.00</td>
<td>0.44</td>
</tr>
<tr>
<td>9</td>
<td>639</td>
<td>5</td>
<td>0.00</td>
<td>0.59</td>
</tr>
<tr>
<td>10</td>
<td>669</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>705</td>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>834</td>
<td>5</td>
<td>0.00</td>
<td>0.79</td>
</tr>
<tr>
<td>13</td>
<td>844</td>
<td>5</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>14</td>
<td>942</td>
<td>5</td>
<td>0.00</td>
<td>0.44</td>
</tr>
<tr>
<td>15</td>
<td>965</td>
<td>5</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>16</td>
<td>1044</td>
<td>4</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>17</td>
<td>1055</td>
<td>6</td>
<td>0.97</td>
<td>0.90</td>
</tr>
<tr>
<td>18</td>
<td>1126</td>
<td>5</td>
<td>0.00</td>
<td>0.80</td>
</tr>
<tr>
<td>19</td>
<td>1293</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>1309</td>
<td>5</td>
<td>0.50</td>
<td>0.44</td>
</tr>
<tr>
<td>21</td>
<td>1348</td>
<td>6</td>
<td>0.00</td>
<td>0.70</td>
</tr>
<tr>
<td>22</td>
<td>1407</td>
<td>6</td>
<td>0.00</td>
<td>0.68</td>
</tr>
<tr>
<td>23</td>
<td>1409</td>
<td>4</td>
<td>0.00</td>
<td>0.43</td>
</tr>
<tr>
<td>24</td>
<td>1423</td>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>1546</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>26</td>
<td>1709</td>
<td>7</td>
<td>0.00</td>
<td>0.46</td>
</tr>
<tr>
<td>27</td>
<td>1855</td>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>28</td>
<td>1916</td>
<td>5</td>
<td>0.00</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Breeding was initiated at GVKV centre, Bangalore, by utilizing IE 1012 as the resistant parent and PES 176, HPB 7-6, PR 202 and Indaf 8 as high yielding adopted parents. Preliminary evaluation of F$_5$ progenies for blast and yield data suggests in general that both neck and finger blast incidence was higher in early maturing progenies within the cross. It is noteworthy that five progenies each in PR 202 × IE 1012 and in Indaf 8 × IE 1012 crosses were outstanding with significant high yield over their parents coupled with high tolerance to both neck and finger infection.

SEEDLING BLIGHT OR LEAF BLIGHT

Butler (1918) stated that blight caused by Drechslera nodulosum is also one of the serious diseases of ragi. It has been recorded in India and other coun-
tries. In India, this disease is prevalent in Madhya Pradesh, Andhra Pradesh, Maharashtra, Uttar Pradesh, Bihar, Tamil Nadu and Karnataka.

The disease affects all the parts of the plants like base of the plant, culms, leaf sheath, leaf blade, neck and fingers. Germinating grains may be killed before the seedling emerges above the soil. After emergence, symptoms appear as minute oval, light brown lesions on the leaf blade. These develop into elongate lesions and turn dark brown. Several such lesions coalesce to form large patches on the leaf blade. In some cases the basal portion of the seedling gets affected resulting in seedling death. The pathogen affects the stem, sheath, neck and finger of the earhead causing chaffiness and discolouration of the seed. Consequently there is considerable reduction in the yield. According to Grewal and Pal (1965) seeds were found contaminated with *D. nodulosum*.

The primary infection is caused by the pathogen on the seed. The fungus remains viable on the stubbles and plant debris. Secondary spread is through air borne conidia. According to McRae (1932) the optimum temperature for infection is 30-32°C and can occur between 10 and 37°C. Several other cereals are infected by this organism including *Setaria italica*, *Eleusine indica*, *Echinochloa frumentacea*, *Panicum miliaceum*, *Sorghum vulgare* and *Zea mays* (Mitra, 1931; Mitra and Mehta, loc. cit.). High humidity with intermittent rains during the period of emergence of ear and before grain formation causes heavy ear infection and reduction yield.

As the disease is primarily seed borne, seed treatment with any organomercurial compounds will control the pre-emergence damping off seedling blight. The secondary infection in the field can be reduced by protective sprayings with suitable fungicides. In addition to chemical control of the disease, studies have been conducted to identify genetic resistance in the germplasm collection. According to Coleman (1920) considerable differences were observed in the reaction of different varieties in Karnataka. The varieties with green glumes exhibited greater infection than those with purple glumes.

Wilt or foot rot

Wilt or foot rot caused by *Sclerotium rolfssii* is mainly a soil borne disease. The disease is prevalent in all regions wherever the crop is cultivated. The affected plants appear pale green and stunted. The infection occurs at the base of the plants, involving leaf sheath and culms. These soften and become brown at the place of infection, eventually the plants wilt, lodge and dry up, white fan like mycelial growth is evident between the sheath or on the stem at the basal region. Later, minute, mustard seed like, tan coloured Sclerotia are formed on the surface.

The fungus is mainly soil borne and active during rainy season and it is not economical to control the disease through chemicals. However, cultural methods like deep ploughing before sowing, crop rotation with non-
graminaceous crops and maintaining optimum soil conditions will help to avoid this disease.

Downy mildew or green ear disease

Downy mildew or green ear disease caused by *Sclerophthora macrospora* affects the plants and produces two types of symptoms. The occurrence of this disease was observed in old Mysore State in 1930 (Venkatarayan, 1947). In 1948, the severe outbreak of this disease was again recorded in Mysore State. The damage was so severe in some fields as to render the crop not worth harvesting. Since then, it is known to occur in Tamil Nadu and other states in India.

The affected plants become stunted with shortened internodes, leaves arising close together and the plants assume a bushy and bunched appearance. The leaves are pale green. The lemma, palea and sometimes glumes change into leafy structures. The proliferation takes place first in the basal spikelets and afterwards others become involved. Finally the whole ear presents a bush like appearance (Thirumalachar and Narasimhan, 1949).

Raghavendra and Safeeulla (loc. cit.) reported the fungus as internally as well as externally seed borne. The fungus has a wide host-range including *Eleusine indica*, maize, wheat, oat, *Eragrostis pectinacea* and *Digitaria marginata*. Physiologic specialization is well developed in the species, so that some races are confined to particular hosts.

As the pathogen is easily carried in fragments of proliferated parts mixed with seed, the seed treatment with organomercurial compounds will check the primary infection. Providing good drainage in the low lying field, proper crop rotation methods, roguing of the infected plants and elimination of wild grasses and related hosts will reduce the disease incidence.

Smut

Earlier, smut disease caused by *Melanopsichium eleusinis* was only of minor importance. After the introduction of new high yielding varieties, it is gaining importance in Karnataka. In Karnataka, two types of symptoms have been observed (i) occurrence of smut sori in the grains and also on the main rachis or peduncle of the inflorescence, (ii) the second type of symptom is the reduction and shrivelling of entire inflorescence, the floral organs converted into sac-like smut sori. The disease appears at the time of grain formation. Few grains in an ear are affected, but these are scattered throughout the ear. The sori are globose, greenish at first and later turn dirty black. Spores are formed in the cavities found in the sori, mixed with a gelatinous matrix but later the mass becomes pulvurent (Mundkur and Thirumalachar, 1946).

The pathogen is neither systemic nor externally seed borne. Floral infection is by the wind borne spores. At present there is no control measure which
can be advised, but in vitro studies have shown that systemic compounds like Aliette and Vitavax inhibit fungus growth. Attempts have been made to identify resistant lines from the germplasm collection against this disease.

Virus diseases

Several viruses have been reported to infect ragi. Rao et al. reported a sap transmissible virus, while Jagannathan et al. reported one that is transmitted by aphid. A leaf hopper transmitted virus was reported from Karnataka, which is different from the above, having ragi has the lone host (Yaraguntaiah and Keshavamurthy, 1969). In 1973, Mariappan et al. reported, from Tamil Nadu, a streak virus which was transmitted by delphacid insect *Sogatella* sp. which appeared to be the same virus prevalent in Karnataka. However, another virus, producing streak symptoms transmitted by a leaf hopper vector *Cicadulina chinai* (Ghauri) was reported from Karnataka (Nagaraju et al., 1982).

Two viruses have been observed on finger millet in Karnataka, namely mottle streak and streak. The mottle streak virus causes chlorosis, broken streaking, striping, mottling and severe yellowing of leaves. The streak virus symptoms are continuous, straight streaking on the leaves parallel to the veins, stunting, shortening of internodal length and production of more tillers. Mottle streak virus is transmitted by leaf hoppers *Cicadulina bipunctella bipunctella* and *Cicadulina chinai*, whereas, streak virus is transmitted only by *Cicadulina chinai* (Nagaraju et al., 1982).

Virus vector relationship of mottle streak virus and its vector *Cicadulina bipunctella bipunctella* was studied. The results revealed that the vector takes a minimum acquisition feeding period of 12 hours to acquire the virus on source plant and after that it has an incubation period of 8 days to become viruliferous. The minimum inoculation feeding period of 12 hours is necessary to transmit the virus to test plant. The symptom expression of the disease is observed 9 days to one month after inoculation.

Similarly the virus vector relationship of streak virus and its vector, *Cicadulina chinai* was reported by Nagaraju and Viswanath (1981). The minimum acquisition and inoculation feeding period have been found to be 6 hours and 30 minutes, respectively. The incubation period within the vector has been found to be one hour. The virus remains infective in the insect throughout its life span. It takes 7 days after inoculation for the symptom expression in the test plant.

Mottle streak virus incidence is more prevalent than streak virus in the field. However, the streak virus is more virulent resulting in the mortality of the plant.

The epidemiological studies of mottle streak virus indicate that the disease incidence is maximum in the March sown crop and the least in the July sown
crop. Maximum leaf hopper population was observed in the November sown crop and the least in the July sown crop. The spread of the disease was not uniform throughout the year (Anonymous, 1979). Further, there was positive correlation between the incidence of the disease and jassid population (Table 5).

TABLE 5

Seasonal incidence of ragi viruses and its leaf hopper vector population at Bangalore

<table>
<thead>
<tr>
<th>Sowing date</th>
<th>Mottle streak virus (%)</th>
<th>Streak virus (%)</th>
<th>Vector population (per sq. mtr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 22nd</td>
<td>2.90</td>
<td>1.21</td>
<td>2.77</td>
</tr>
<tr>
<td>July 7th</td>
<td>2.18</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>July 22nd</td>
<td>0.58</td>
<td>0.00</td>
<td>0.66</td>
</tr>
<tr>
<td>August 7th</td>
<td>1.97</td>
<td>0.19</td>
<td>3.71</td>
</tr>
<tr>
<td>August 22nd</td>
<td>2.97</td>
<td>0.17</td>
<td>1.83</td>
</tr>
<tr>
<td>September 22nd</td>
<td>0.98</td>
<td>0.14</td>
<td>1.62</td>
</tr>
<tr>
<td>October 22nd</td>
<td>2.02</td>
<td>0.07</td>
<td>2.66</td>
</tr>
<tr>
<td>November 22nd</td>
<td>3.09</td>
<td>0.07</td>
<td>5.91</td>
</tr>
<tr>
<td>December 22nd</td>
<td>0.86</td>
<td>0.22</td>
<td>2.07</td>
</tr>
<tr>
<td>January 22nd</td>
<td>1.15</td>
<td>0.02</td>
<td>1.34</td>
</tr>
<tr>
<td>February 22nd</td>
<td>3.04</td>
<td>0.07</td>
<td>2.45</td>
</tr>
<tr>
<td>March 22nd</td>
<td>7.26</td>
<td>0.07</td>
<td>2.61</td>
</tr>
<tr>
<td>April 22nd</td>
<td>6.84</td>
<td>0.06</td>
<td>2.21</td>
</tr>
<tr>
<td>May 22nd</td>
<td>1.89</td>
<td>0.02</td>
<td>1.87</td>
</tr>
</tbody>
</table>

The host range studies show that the mottle streak virus can infect 9 plant species, whereas streak virus has a wider host range in that it can infect crop plants like Bajra, sorghum, maize, wheat, barley and oats also, in addition to the 9 plant species which mottle streak can infect. However, four wild species of Eleusine and three grass species were found to be immune to this virus (Nagaraju et al., 1982).

In the varietal screening trial to find out genotypes resistant to the mottle streak virus, some degree of resistance has been seen among the African collections in the germplasm, whereas, all accessions tested were found to be susceptible to streak virus.

The loss of grain due to mottle streak virus was found to be 53.9 per cent (Table 6). This loss could be minimized by spraying Rogor 15-20 days after planting. In the case of streak virus, the loss has gone up to 100 per cent when they were inoculated in early stage i.e. up to 30 days old seedlings (Nagaraju, et al., 1981). The loss is as high as 60-70 per cent when they were inoculated even at the time of earhead emergence (Table 7).
TABLE 6
Effect of mottle streak virus infection on different characters of ragi plants

<table>
<thead>
<tr>
<th>Characters</th>
<th>Infected</th>
<th>Healthy (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of tillers</td>
<td>1.90</td>
<td>2.32</td>
</tr>
<tr>
<td>Straw weight per plant (gm)</td>
<td>35.60</td>
<td>63.00</td>
</tr>
<tr>
<td>Earhead weight per plant (gm)</td>
<td>10.20</td>
<td>25.40</td>
</tr>
<tr>
<td>Grain yield per plant (gm)</td>
<td>7.40</td>
<td>19.60</td>
</tr>
<tr>
<td>Loss of straw weight over control (%)</td>
<td>43.49</td>
<td></td>
</tr>
<tr>
<td>Loss of grain weight over control (%)</td>
<td>62.74</td>
<td></td>
</tr>
<tr>
<td>1000 grain weight (gm)</td>
<td>3.01</td>
<td>3.4</td>
</tr>
</tbody>
</table>

FOXTAIL MILLET DISEASES

Foxtail millet is one of the small millets grown on a large area in India. In India, it is cultivated in Andhra Pradesh, Madhya Pradesh, Karnataka, Tamil Nadu and Maharashtra. Blast, rust, downy mildew and smut are the most important diseases affecting this crop.

Blast

Blast caused by *Pyricularia setariae* is one of the diseases causing considerable grain loss in many states. The disease occurs almost every year during the rainy season. Environmental conditions, particularly rainfall, temperature and humidity are the most important factors affecting the severity of this disease.

The spots are seen on the leaf blade. They are surrounded by a dark brown margin. The spots are small and scattered and measure 2-5 mm in diameter. When the disease appears in severe form, the leaves wither and dry up. Unlike the blast of rice or finger millet, the infection is not evident on the neck or ear.

According to Kulkarni (1969) studies on the pathogenicity and cultural, physiological and morphological characters of *Pyricularia setariae* isolates causing blast of *Setaria italica* showed differences indicating the existence of at least four physiological forms of the fungus.

Palaniswamy *et al.* (1970) reported that in inoculations, *Pyricularia setariae* infected *Setaria italica*. Young plants up to 40 days old were highly susceptible to the disease which was found to be seed borne and to some extent soil borne. The fungus lost its viability on stored-seeds after 75 days.

The isolate from *Setaria* readily infects finger millet, pearl millet, wheat and *Dactyloctaenium aegyptium*.

Control of this disease by using chemicals is not economical. However, studies have been conducted to identify genetic resistance within the germplasm collection. Singh *et al.* (1976) found the varieties SR 118, SR 102, ISc 709, 701, 703, 710, 201, jNsc 33, 56, RS 179 and ST 5307 was resistant.
TABLE 7
Effect of streak virus infection on different characters of ragi plants

<table>
<thead>
<tr>
<th>Observations</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality of infected plants (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>50.00</td>
<td>46.00</td>
<td>40.00</td>
<td>0.0</td>
<td>2.70</td>
</tr>
<tr>
<td>No. of tillers</td>
<td>3.40</td>
<td>2.88</td>
<td>2.67</td>
<td>2.69</td>
<td>2.68</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td>Plant height at maturity (cm)</td>
<td>23.50</td>
<td>26.50</td>
<td>36.50</td>
<td>36.50</td>
<td>36.50</td>
<td>64.60</td>
<td>6.50</td>
</tr>
<tr>
<td>Earhead weight per plant (gm)</td>
<td>0.60</td>
<td>1.50</td>
<td>2.80</td>
<td>2.89</td>
<td>2.89</td>
<td>6.50</td>
<td>16.85</td>
</tr>
<tr>
<td>Straw weight per plant (gm)</td>
<td>1.94</td>
<td>2.19</td>
<td>3.17</td>
<td>6.29</td>
<td>6.29</td>
<td>16.85</td>
<td>5.52</td>
</tr>
<tr>
<td>Grain yield per plant (gm)</td>
<td>0.21</td>
<td>0.49</td>
<td>1.15</td>
<td>1.54</td>
<td>1.54</td>
<td>5.52</td>
<td>2.98</td>
</tr>
<tr>
<td>Loss of grain yield over control (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>96.19</td>
<td>91.12</td>
<td>79.16</td>
<td>72.10</td>
<td></td>
</tr>
<tr>
<td>1000 grain weight (gm)</td>
<td>0.48</td>
<td>1.10</td>
<td>2.18</td>
<td>2.27</td>
<td>2.27</td>
<td>2.98</td>
<td></td>
</tr>
</tbody>
</table>

Age of the seedlings at inoculation (in days)
Rust

Rust caused by the fungus *Uromyces setariae italica*, is known to be prevalent in all the states in India, wherever this crop is grown, but was of little economic importance hither to (Butler, 1918). But in recent years there were several reports of the rust assuming serious epiphytotic proportions and destroying the crop before the ears have formed.

Numerous minute, brown urediosori appear on both sides of the leaf. They are brown, oblong pustules often arranged in linear rows. Pustules are also produced on leaf sheaths, culms, and stems. The rust affects the crop in all stages of growth. The greatest extent of damage occurs when the infection commences before the flowering stage. When the infection takes place after the grains are set, no appreciable reduction in yield is noticed. Premature drying of foliage is caused by early and heavy infection and the plants may dry up before heading or even the ears that are formed may develop only few grains.

The life cycle of the fungus has two stages, the urediosori and the teliosori. The uredia are the first to be seen. Urediospores germinate, producing one or more germ tubes capable of infecting the host. The telia are formed on the leaf blade, leaf sheath and stem and are larger in size than uredia. The teliospores are single celled, pedicellate, oblong, globose, yellowish brown, with a smooth, thick walls, which are much thicker at the apex than at the base.

The urediospores infect the host and produce uredia in seven to ten days. If the crop is grown throughout the year as in many parts of India, the fungus can perpetuate in its uredial stage, with the collateral hosts possibly playing a part in its perpetuation. The rust appears within 20 to 25 days of sowing and the intensity increases as the plant grows older. The telia appear at the time of maturity of the crop.

Most of the agronomically important varieties are susceptible to this disease. However, some of the entries in the germplasm collection have been found to be tolerant to this disease. Further, their use as parents in hybridization with local varieties may lead to the evolution of resistant varieties.

Smut

In India, smut caused by *Ustilago crameri* is prevalent in Karnataka, Andhra Pradesh, Tamil Nadu and Maharashtra. Sundararaman (1921) found that in some parts of districts of the Southern States, nearly 75 per cent of the grains in an ear were affected. Inhalation of the spores during threshing operations may cause hay fever or asthma among the labourers (Fisher, 1953).

Symptoms

The sori are seen in the flowers and the basal parts of the palea. The fungus affects most of the grains in an ear but sometimes the terminal portion of the
spike may escape. The sori are pale greyish in colour and measure 2 to 4 mm in diameter. When crop matures the sori rupture and produce dark powdery mass of spores.

The fungus is externally seed borne. Certain amount of soil borne infection has also been observed in some dry areas. Wang (1943) recorded that the dikaryotic hyphae penetrated the tissues of two day old seedlings by mechanical pressure. The invading hyphae are systemic, mainly concentrated towards the apical portions and at the time of flowering replace the ovaries, producing septate hyphae which transform into chlamydospores.

CONTROL
Since the disease is mainly seed-borne, it can be controlled by treating the seed with organomercurials or steeping the seed for 10 to 30 minutes in 2 per cent copper sulphate solution or 0.5 per cent formalin for about 30 minutes.

DOWNY MILDEW OR GREEN EAR

Downy mildew, (Sclerospora graminicola) is prevalent in India, China, Japan, Russia, the southeastern countries of Europe and America. In India it is prevalent in Maharashtra, Tamil Nadu, Karnataka, Andhra Pradesh and Bihar. In certain years it has caused loss up to 50 per cent in the foxtail millet crop.

SYMPTOMS
There are two types of infections reported; the primary infection, which starts with the seedling is systemic, while the secondary infection occurs on older plants is local. Primary infection causes chlorosis of the plant and the leaves turn whitish. The terminal spindle fails to unroll, becomes chlorotic and later turns brown and gets shredded. Whitish bloom of sporangiophores and sporangia develop on the surface of the affected leaves under humid conditions. When the infection is mild, the plant may develop ears, but the floral parts are proliferated into green leafy structures, hence the name ‘green ear’. In the spikelet the glumes, lemmas, paleae, stamens and pistils are turned into leafy structures of variable size. Sometimes only a portion of the ear may be affected, with the remainder producing normal grains.

Secondary infection causes formation of restricted chlorotic lesions on the younger leaves. On these the downy fungal growth may be seen under humid conditions.

INFECTION
The fungus is an obligate parasite. Primary infection is mainly from soil borne oospores or on the grains. The sporangia are produced on the host and spread throughout the field by wind, causing secondary infection when the favourable conditions prevail.
CONTROL
The disease is partly seed borne. Seed treatment with an organomercurial gives partial control by eliminating the surface borne ooospores. Eradicating the diseased plants before the ooospores are formed helps to reduce the inoculum potential in the field.

Minor diseases
In addition to the above mentioned diseases, *Ephelis*, bacterial blight and viral streak have been observed on this crop, but they are of little economic importance hither to.

LITTLE MILLET DISEASES
In India little millet is cultivated in many states. It is a hardy, short duration crop and can withstand both water-logging and drought. It is generally grown on poor lands. The rust is the most common disease of this crop.

Rust (*Uromyces linearis*)
Rust is known to occur in India, Sri Lanka and Philippines. In India, it has been recorded in Maharashtra and Tamil Nadu. It causes very little damage to the crop.

SYMPTOMS
Numerous, narrow, minute, brown pustules arranged in linear rows appear on the upper surface of the leaves.

PATHOGEN
The Uredia are brown and erumpent. The urediospores are brown, round, echinulate. The telia are black in colour. The teleiospores are thick walled, smooth, globose, brown with persistent, long thick pedicels, fresh urediospores germinate readily but not the teleiospores.

KODO MILLET DISEASES
Kodo millet is cultivated in many countries in the world, both for grain and fodder. In India, it is grown in Madhya Pradesh, Orissa, Tamil Nadu, Bihar, Karnataka and Andhra Pradesh, generally on soils, with poor fertility. Rust and smut are the important diseases of this crop in India.

Head smut (*Sorosporium paspali*)
In India, head smut has been recorded from Madhya Pradesh, Andhra Pradesh, Bihar, Tamil Nadu and Karnataka. According to Butler (1918), it causes heavy losses in some years.
SYMPTOMS

The entire panicle is transformed into a long sorus. When young, a cream coloured thin membrane covers the sorus. In some cases, it is enclosed in the flag leaf and may not emerge fully. The membrane bursts and exposes the black mass of spores.

PATHOGEN

The spores are held in loose ball-like masses of individual spores, which easily separate, are globose to angular, dark brown and with a thick smooth epispore. On germination a promycelium bearing terminal and lateral sporidia are formed.

INFECTION

The disease is mainly seed-borne. The spores adhere to the surface of the grains and infect the seedlings. Soil-borne infection is insignificant. After entering the seedling, the hyphae spread inter and intracellularly and fungus becomes systemic. It enters the meristamatic tissues and finally infects the ear.

CONTROL

Sattar (1930) reported that steeping the seeds in 1.5 per cent copper sulphate or dusting with copper carbonate at 6 g/kg of seed were equally effective. Even when the treated seeds are stored for two months, there is no reduction in germination of the seeds. Organomercurial dusts for seed treatment also control the disease.

Rust (Puccinia substriata Ellis and Barth)

Rust was first recorded on kodo millet from Kanaighat in Sylhet and from Kumaon hills as Uredo paspali-scrobiculata. Only the Uredial stages was seen at that time. Afterwards it was recorded from Coimbatore. Both the Uredial and the telial stages were recorded and it was renamed as Puccinia substriata.

SYMPTOMS

The Uredia are formed on the upper surface of the leaf blade and on the leaf sheath as oval, erumpent, brown sori. These are present throughout the year on the grass hosts from where they go to the cultivated millet. The telia are usually formed on the under surface of leaf sheath and leaf blade. They remain covered under the epidermis for a long time and are brown in colour.

INFECTION

The urediospores germinate readily in water drops within three hours, producing one or more stout germ tubes. The incubation period extends from 8 to 12 days. The rust readily infects the cultivated and the wild forms of hosts.
BARNYARD MILLET DISEASES

Barnyard millet is cultivated in India and in many parts of the Far-East. Of all the grain crops, it is one of the quickest growing and very popular in Japan and East Indies. Several smuts form the chief group of diseases infecting this millet.

Smuts

a) Head smut (*Ustilago crus-galli*)

The destructive head smut, is prevalent in India and the United States. The infected inflorescence is deformed or completely destroyed. In addition the smut produces gall like swellings on the stem, the nodes of the young shoots and in the axils of the older leaves. Sometimes, twisted, deformed clusters of leafy shoots with aborted ears may develop. The gall-like swellings are covered by a hairy tough membrane of host tissue and may be up to 12 mm in diameter (Mundkur, 1943).

Infection is seed borne and seed treatment with organomercurial will be useful in controlling the disease.

b) Kernel smut (*Ustilago paradoxa*)

Ustilago paradoxa causing the kernel smut, infects the ovaries only. In India, it has been observed in Bihar, Maharashtra and Tamil Nadu. All spikelets are not affected, some may escape infection. The infected ovary is transformed into a round, hairy, grey sac, not exceeding the size of a normal grain.

CONTROL

Since the disease is seedborne, it can be easily controlled by seed treatment with organomercurial fungicides.

c) *Ustilago panici-frumentacei*

This disease has also been reported from Uttar Pradesh, Bihar, Maharashtra and Madhya Pradesh. It is ovaricolous but all the grains in an ear may not be affected. The affected ovaries enlarge two or three times their normal size and their surfaces become hairy. The spores escape through an opening at the tip.

CONTROL

Steeping the seeds for one hour in 3 or 4 per cent acetic acid mixed with 6 per cent milk of lime gave satisfactory control of the disease. Pall and Nema (1978) reported that seed treatment with Ceresan, Bavistin, Dithane M 45, MBC and Thiram controlled the disease.
REFERENCES

INTRODUCTION

Small millets are small grained cereals, mostly grown under rainfed conditions in marginal soils. These form the staple food of the poorest of the poor and a larger section of tribal and hill peoples. The evolution of new and high yielding small millet varieties may encourage the build up of insects which were not predominant before. With the establishment of small millet centres of excellence since 1978, the entomological work gained momentum. Headway has since been made in identifying key insect pests on small millets and in evolving management practices. The major insect pest species that attack small millets and their management practices are presented. Additionally, potential insects and areas of future research are discussed.

PEST COMPLEX OF SMALL MILLETS

A list of insect pests associated with small millets is given in Table 1. The major pests are shootfly species on different small millets, stem borers, earhead worms and aphids on finger millet and army worms, leaf rollers and leaf beetles on foxtail millet. Other potential and occasional pests which infest the millets in limited areas are: gall midge in little and kodo millets, leaf miner in foxtail millet, termites in proso millet, stem borer in barnyard millet and leaf hoppers and root aphids in finger millet. Other minor pests, though present in the field do not cause economic losses and are of secondary importance (e.g. white grubs, bugs, and grasshoppers).
TABLE 1
Insect pests on small millets in India

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Damaging stage</th>
<th>Plant part attached</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodo millet (Paspalum scrobiculatum, L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shootfly</td>
<td>Atherigona simplex, Thom.</td>
<td>Maggot</td>
<td>Growing point</td>
<td>High</td>
</tr>
<tr>
<td>Gall midge</td>
<td>Orseolia sp.</td>
<td>"</td>
<td>Spikelet</td>
<td>Moderate</td>
</tr>
<tr>
<td>Stem or Pink borer</td>
<td>Sesamia inferens, Wlk.</td>
<td>Caterpillar</td>
<td>Stem</td>
<td>"</td>
</tr>
<tr>
<td>Leaf roller</td>
<td>Marasmia trapezalis, Wlk.</td>
<td>"</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>Jassid</td>
<td>Hecalus sp.</td>
<td>Nymph & Adult</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Gundhi bug</td>
<td>Leptocorisa acuta</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Army worm</td>
<td>Mythimna separata, Wlk.</td>
<td>Caterpillar</td>
<td>Ear</td>
<td>"</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>Acrida exalta, Wlk.</td>
<td>Nymph & Adult</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>B. Foxtail millet—Setaria italica Beauv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shootfly</td>
<td>Atherigona atripalpis, M.</td>
<td>Maggot</td>
<td>Growing point</td>
<td>Moderate</td>
</tr>
<tr>
<td>Flea beetle</td>
<td>Chaetocnema basalis, Baly.</td>
<td>Adult</td>
<td>Leaf</td>
<td>Mod-High</td>
</tr>
<tr>
<td></td>
<td>Madurasia sp.</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Army worm</td>
<td>Mythimna separata, Wlk.</td>
<td>Caterpillar</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Leaf roller</td>
<td>Marasmia trapezalis, Wlk.</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Stem borer</td>
<td>Chilo partellus, Swim'</td>
<td>Nymph & Adult</td>
<td>Leaf</td>
<td>"</td>
</tr>
<tr>
<td>Surface grasshopper</td>
<td>Chrotogonus sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ant</td>
<td>Sima sp. nr longiceps, Foral</td>
<td>Adult</td>
<td>Ear</td>
<td>"</td>
</tr>
<tr>
<td>Leaf miner</td>
<td></td>
<td>Maggot</td>
<td>leaf</td>
<td>Moderate</td>
</tr>
<tr>
<td>C. Little millet—Panicum miliare, Lam.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shootfly</td>
<td>Atherigona miliaeceae. M.</td>
<td>Maggot</td>
<td>Growing point</td>
<td>High</td>
</tr>
<tr>
<td>Gall midge</td>
<td>Orseolia sp.</td>
<td>"</td>
<td>Spikelet</td>
<td>Moderate</td>
</tr>
<tr>
<td>Flea beetle</td>
<td>Chaetocnema sp.</td>
<td>Adult</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>Stink bug</td>
<td>Nezara viridula</td>
<td>Nymph & Adult</td>
<td>Ear</td>
<td>Low</td>
</tr>
<tr>
<td>Black pentatomid</td>
<td>Dolycoris indicus, Stal.</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Jassid</td>
<td>Kolla mimica, Dist.</td>
<td>"</td>
<td>Leaf</td>
<td>"</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>Acrida exalta</td>
<td>"</td>
<td>Leaf</td>
<td>"</td>
</tr>
<tr>
<td>D. Proso millet—Panicum miliaceum L.</td>
<td>Maggot</td>
<td>Growing point</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Shootfly</td>
<td>Atherigona miliceae, M.</td>
<td>Workers</td>
<td>Seed to seedling</td>
<td>Moderate</td>
</tr>
<tr>
<td>Termites</td>
<td>Odonotermes sp.</td>
<td>Microtermes sp.</td>
<td>Nymph & Adult</td>
<td>Leaf & shoot</td>
</tr>
<tr>
<td>Field cricket</td>
<td>Brachybrutes sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Barnyard millet—Echinochloa frumentacea (Roxb.) Link</td>
<td>Maggot</td>
<td>Growing point</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Shootly</td>
<td>Atherigona fakata, Thom.</td>
<td>Grub</td>
<td>Root</td>
<td>Low</td>
</tr>
<tr>
<td>White grubs</td>
<td>Anomala dimidista, Burm.</td>
<td>Grub</td>
<td>Root</td>
<td>Low</td>
</tr>
<tr>
<td>Pink borer</td>
<td>Holotrichia seticolls, Mos.</td>
<td>Caterpillar</td>
<td>Stem</td>
<td>Moderate</td>
</tr>
<tr>
<td>Aphid</td>
<td>Sesamia inferens, Wilk.</td>
<td>Nymph & Adult</td>
<td>Leaf & Shoot</td>
<td>Low</td>
</tr>
<tr>
<td>Leaf caterpillar</td>
<td>Euproctis sp.</td>
<td>Caterpillar</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>Acrida exalta, Wilk.</td>
<td>Nymph & Adult</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>E. Barnyard millet—Echinochloa frumentacea (Roxb.) Link</td>
<td>Maggot</td>
<td>Growing point</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Shootly</td>
<td>Atherigona fakata, Thom.</td>
<td>Grub</td>
<td>Root</td>
<td>Low</td>
</tr>
<tr>
<td>White grubs</td>
<td>Anomala dimidista, Burm.</td>
<td>Grub</td>
<td>Root</td>
<td>Low</td>
</tr>
<tr>
<td>Pink borer</td>
<td>Holotrichia seticolls, Mos.</td>
<td>Caterpillar</td>
<td>Stem</td>
<td>Moderate</td>
</tr>
<tr>
<td>Aphid</td>
<td>Sesamia inferens, Wilk.</td>
<td>Nymph & Adult</td>
<td>Leaf & Shoot</td>
<td>Low</td>
</tr>
<tr>
<td>Leaf caterpillar</td>
<td>Euproctis sp.</td>
<td>Caterpillar</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>Acrida exalta, Wilk.</td>
<td>Nymph & Adult</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>F. Finger millet—Eleusine coracana, Gaettn.</td>
<td>Caterpillar</td>
<td>Stem</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Pink or stem borer</td>
<td>Sesamia inferens, Wilk.</td>
<td>"</td>
<td>"</td>
<td>Low</td>
</tr>
<tr>
<td>White stem borer</td>
<td>Saluria inicta, Wilk.</td>
<td>"</td>
<td>"</td>
<td>Low</td>
</tr>
<tr>
<td>Sorghum stem borer</td>
<td>Chilo partellus, Swin.</td>
<td>"</td>
<td>"</td>
<td>Moderate</td>
</tr>
<tr>
<td>Earhead caterpillar</td>
<td>Cryptoblabes gnidielli, M.</td>
<td>"</td>
<td>Ear</td>
<td>High</td>
</tr>
<tr>
<td>Sorghum stem borer</td>
<td>Heliothis armigera, Hb</td>
<td>"</td>
<td>Ear</td>
<td>High</td>
</tr>
<tr>
<td>Earhead caterpillar</td>
<td>Eulemma silcula, Swin.</td>
<td>"</td>
<td>"</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sorghum stem borer</td>
<td>Cacoecia epicryta, Meur.</td>
<td>"</td>
<td>"</td>
<td>High</td>
</tr>
<tr>
<td>Red hairy caterpillar</td>
<td>Armsacta albistira</td>
<td>"</td>
<td>Leaf</td>
<td>Low</td>
</tr>
<tr>
<td>Aphid</td>
<td>Hystoreneura setariae, Them.</td>
<td>Nymph & Adult</td>
<td>Leaf, stem, ear</td>
<td>High</td>
</tr>
<tr>
<td>Root aphid</td>
<td>Tetraneura nigribdominellis, Sasaki</td>
<td>"</td>
<td>Root</td>
<td>Moderate</td>
</tr>
<tr>
<td>Leaf hopper</td>
<td>Cicadulina bipunctella bipunctella Matsumra</td>
<td>"</td>
<td>Leaf</td>
<td>Mod-high</td>
</tr>
<tr>
<td>Leaf hopper</td>
<td>Cicadulina chinal, Ghauri</td>
<td>"</td>
<td>"</td>
<td>Low</td>
</tr>
<tr>
<td>Surface grasshopper</td>
<td>Chrotognus sp.</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>
SEEDLING PESTS

Shootfly (Atherigona spp.)

NATURE OF DAMAGE

Shootfly is the major seedling pest of small millets. Infestation usually begins during the seedling stage (1-5 leaf stage) but may be associated with older plants. The maggot causes dead hearts and in some cases the seedlings are killed. Tillers are produced excessively after late attacks. Damaged tillers may produce earheads, but with no grains (white ears). Maximum incidence occurs during late July or early August. Extreme temperatures and continuous rainfall adversely affect fly activity.

ECONOMIC LOSSES

A number of shootfly species attack small millets (Jotwani et al., 1969; Singh and Dias, 1972; Nageschandra and Musthak Ali, 1983a). Atherigona destructor M. alone could bring an yield loss of 36 per cent in proso millet (Natarajan et al., 1974) and 39 per cent in case of little millet (Selvaraj et al., 1974). Per cent reduction in yield to the extent of 44.9 in barnyard, 90.9 in proso, 78.5 in little, 35.0 in kodo and 1.8 in foxtail millets was reported by Nageshchandra and Musthak Ali (1983b).

SOURCES OF RESISTANCE

Besides preliminary studies in which a few tolerant lines of little millet (Shirole et al., 1982) and proso millet (Sharma et al., 1980; Murthi et al., 1982) are identified, a large number of germplasm and selected varieties were systematically field screened to different insect pests at multilocations across years and locations. Lines relatively resistant against shootfly are shown in Table 2.

Foxtail millet lines (Table 3) showing relative tolerance to flea beetles, army worms, and leaf rollers have also been identified by the same authors. Some of them also exhibited multiple resistance to different insect pests (Table 4).

CULTURAL METHODS OF CONTROL

Date of planting

Early plantings with the onset of monsoon recorded low infestation of shootfly in kodo, little and proso millets with concomitant increase in yield than late planting (Table 5). Shirole et al. (in press) have reported that in kharif damage could be minimised by early sowings in little millet.
TABLE 2
Promising small millets relatively resistant to shootfly in India, 1980-85

<table>
<thead>
<tr>
<th>Kodo millet</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPLM No.</td>
<td>RPS 40-1, RPS 40-2, RPS 62-3, RPS 61-1, RPS 69-2, RPS 72-2, RPS 75-1, RPS 102-2, RPS 107-1, RPS 114-1, RPS 120-1, IQS 147-1, CO 2, Keharpur</td>
</tr>
<tr>
<td>6, 11, 20, 21, 29, 32, 39, 42, 45, 50, 60, 106, 110, 113, 117, 119, 120, 121, 131, 142, 155, 158, 160, 170, 172, 173, 178, 180, 185</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foxtail millet</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS No.</td>
<td>RAU 1, 2, 6 ISe 119, 185, 358, 700, 702, 703, SIA 5, 36, 67, 242, 326, 395, SE 21-1, SIC 1, 2 CO 3.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little millet</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPMR No.</td>
<td>RPM 1-1, 8-1, 12-1, 41-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proso millet</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPMS No.</td>
<td>MS 1307, 1316, 1437, 1595, 4872. PM 29-1, BR 6, CO 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barnyard millet</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>GECH No.</td>
<td>ECC 19, 18, 20, 21</td>
</tr>
</tbody>
</table>

TABLE 3
Foxtail millet entries found resistant to insect pests in India, 1980-85

<table>
<thead>
<tr>
<th>Germlasm GS No.</th>
<th>Army worms</th>
<th>Leaf rollers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 12, 33, 47, 62, 64, 73, 12, 29, 39, 102, 103, 104, 26, 39, 73, 101, 121, 123, 89, 101, 111, 116, 117, 118, 116, 117, 123, 125, 138, 126, 128, 137, 144, 170, 123, 125, 129, 157, 167, 157, 167, 168, 169, 198, 168, 170, 179, 182, 201, 201, 219, 213, 219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIA 1432, 1557, 1583, 1720, SIA 1557, 1583, 1720, 2423, SIA 1432, 2423, 2424, 2425, 2423, 2424, 2425, SE 21-1, 2424, 2425, 2425, SS 21-1, SE 21-1, SIC 28 TNAU 18, TNAU 82, Chitare ITS 69, SIC 31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4

Foxtail millet entries showing multiple resistance to many insect pests in India 1980-85

<table>
<thead>
<tr>
<th>Entry</th>
<th>Insect pest</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS 123</td>
<td>Flea beetle, army worm and leaf roller</td>
</tr>
<tr>
<td>GS 12, 125, 157, 167, 201, 219</td>
<td>Flea beetle and army worm</td>
</tr>
<tr>
<td>GS 101, 170</td>
<td>Flea beetle and leaf roller</td>
</tr>
<tr>
<td>SIA 2425, 2424, 2425</td>
<td>Flea beetle, army worm and leaf roller</td>
</tr>
<tr>
<td>SE 21-1</td>
<td>Flea beetle, army worm and leaf roller</td>
</tr>
<tr>
<td>SIA 1557, 1583, 1720,</td>
<td>Flea beetle and army worm</td>
</tr>
<tr>
<td>SIA 1432</td>
<td>Flea beetle and leaf roller</td>
</tr>
</tbody>
</table>

TABLE 5A

Effect of planting date on shootfly and yield in kodo millet, 1980-81

<table>
<thead>
<tr>
<th>Variety RPS 76</th>
<th>Variety 40-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowing date</td>
<td>(a) (b) (c)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>July 5</td>
<td>11.5 13.2 26.5</td>
</tr>
<tr>
<td>July 15</td>
<td>14.2 12.6 21.2</td>
</tr>
<tr>
<td>July 25</td>
<td>21.1 23.6 12.5</td>
</tr>
<tr>
<td>August 4</td>
<td>34.9 30.1 8.0</td>
</tr>
</tbody>
</table>

(a) percentage of dead hearts 14 days after germination, (b) 28 days after germination, and (c) grain yield in q/ha

TABLE 5B

Effect of planting date on shootfly incidence measured by dead hearts (DH), white ear, and grain yield

<table>
<thead>
<tr>
<th>Little millet 1983-85</th>
<th>Proso millet 1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowing date</td>
<td>DH (%)</td>
</tr>
<tr>
<td>July 10</td>
<td>18.9</td>
</tr>
<tr>
<td>July 20</td>
<td>26.9</td>
</tr>
<tr>
<td>July 31</td>
<td>36.3</td>
</tr>
<tr>
<td>August 10</td>
<td>39.7</td>
</tr>
<tr>
<td>August 20</td>
<td>42.2</td>
</tr>
</tbody>
</table>
Plant density

Closer spacing may either favour some pest species or may increase the effectiveness of the natural enemies in reducing the pest populations. Low plant densities contributed to decrease in the incidence of shootfly in kodo and little millets (Table 6). Davis and Seshu Reddy (1982) have reported that a higher plant density increases number of shootflies, eggs laid and plants attacked in sorghum. The density of plants therefore has a significant effect on oviposition by the fly.

<table>
<thead>
<tr>
<th>TABLE 6</th>
<th>Effect of plant spacing on shootfly incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodo millet 1981</td>
<td>Little millet, 1982-84</td>
</tr>
<tr>
<td>Spacing (cm)</td>
<td>Dead hearts (%)</td>
</tr>
<tr>
<td>5.0</td>
<td>24.7</td>
</tr>
<tr>
<td>7.5</td>
<td>18.3</td>
</tr>
<tr>
<td>10.0</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Fertilizer use

The use of fertilizers to enhance plant nutrition often influenced the longevity and fecundity of insects and mites and the damage they cause as reported by the U.S.A. National Academy of Sciences (1969). Sowing with no nitrogen recorded low incidence of shootfly in kodo and little millets in India (Table 7). Similarly, Singh and Shekavat (1964) found that the percentage of maize plants infested by *Chilo partellus* and *Sesamia inferens* was the least with no nitrogen but increased as the level of nitrogen increased.

<table>
<thead>
<tr>
<th>TABLE 7</th>
<th>Effect of fertilizer on the occurrence of shootfly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodo millet 1984-85</td>
<td>Little millet 1984-85</td>
</tr>
<tr>
<td>N-P (kg/ha)</td>
<td>Dead hearts (%)</td>
</tr>
<tr>
<td>0-0</td>
<td>26.0</td>
</tr>
<tr>
<td>10-0</td>
<td>30.3</td>
</tr>
<tr>
<td>20-0</td>
<td>36.0</td>
</tr>
<tr>
<td>20-20</td>
<td>32.2</td>
</tr>
</tbody>
</table>
Intercropping

Modification of the micro-environment in intercropping and differences in nutrient uptake by the intercrops may influence plant infestation and the development and movement of insect pests. Intercropping of soybean and radish (Table 8) in little millet substantially reduced the shootfly occurrence as compared to sole millet or millet mixed with french bean, ladies finger or pigeonpea. These findings are in conformity with the work of Singh and Singh (1974, 1977) who showed that the presence of mung bean (Vigna radiata) or urd bean (Vigna mungo) and pigeonpea reduced the succession and build up of insect pests in sorghum and pearl millet.

![Table 8](https://example.com/table8.png)

TABLE 8

Shootfly damage and grain yield of little millet in intercropping, 1983

<table>
<thead>
<tr>
<th>Little millet intercropped with:</th>
<th>Row ratio*</th>
<th>Dead hearts (%)</th>
<th>Grain yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Millet</td>
<td>--</td>
<td>38.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Ladies finger</td>
<td>2:1</td>
<td>18.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Ladies finger</td>
<td>3:1</td>
<td>13.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Frenchbean</td>
<td>1:1</td>
<td>13.2</td>
<td>2.2</td>
</tr>
<tr>
<td>2R LM + 1R Frenchbean</td>
<td>2:1</td>
<td>16.1</td>
<td>2.4</td>
</tr>
<tr>
<td>1R LM + 1R Radish</td>
<td>1:1</td>
<td>12.7</td>
<td>1.4</td>
</tr>
<tr>
<td>2R LM + 1R Radish</td>
<td>2:1</td>
<td>13.6</td>
<td>1.7</td>
</tr>
<tr>
<td>1R LM + 1R Soybean</td>
<td>1:1</td>
<td>11.3</td>
<td>1.8</td>
</tr>
<tr>
<td>2R LM + 1R Soybean</td>
<td>2:1</td>
<td>11.6</td>
<td>2.0</td>
</tr>
<tr>
<td>1R LM + 1R Pigeonpea</td>
<td>1:1</td>
<td>25.3</td>
<td>1.7</td>
</tr>
<tr>
<td>2R LM + 1R Pigeonpea</td>
<td>2:1</td>
<td>22.7</td>
<td>2.0</td>
</tr>
<tr>
<td>3R LM + 1R Pigeonpea</td>
<td>3:1</td>
<td>16.2</td>
<td>2.1</td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td>3.8</td>
<td>10</td>
</tr>
<tr>
<td>CD 5%</td>
<td></td>
<td>8.4</td>
<td>21</td>
</tr>
</tbody>
</table>

*Row ratio number of rows of millet followed by number of rows of the intercrop.

Weeding

This practice involves the removal or destruction of weeds to eliminate the pest or deny it food and shelter. Elimination of weeds reduced shootfly infestation in kodo millet (Table 9).

CHEMICAL CONTROL

Soil application of phorate 1 kg a.i./ha in furrow is effective in checking shootfly infestation in kodo and little millets and gave higher yields. Carbofuran (1 kg a.i./ha) and quinolphos 5 G (2 kg a.i./ha) as soil treatments were reported effective against shootfly in kodo millet (Raghuwanshi and Rawat, 1985). Carbofuran 3G @ 1.5 kg a.i./ha as soil application was most effective in reduc-
TABLE 9
Effect of number of weedings on shootfly and yield in kodo millet, 1981

<table>
<thead>
<tr>
<th>Number of weedings</th>
<th>Variety</th>
<th>Yield (q/ha)</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPS 76</td>
<td>RPS 41-1</td>
<td>RPS 76</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>1.4</td>
<td>11.6</td>
</tr>
<tr>
<td>2</td>
<td>3.6</td>
<td>2.4</td>
<td>9.8</td>
</tr>
<tr>
<td>1</td>
<td>9.1</td>
<td>5.8</td>
<td>8.2</td>
</tr>
<tr>
<td>0</td>
<td>7.8</td>
<td>5.9</td>
<td>5.4</td>
</tr>
<tr>
<td>SE</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

ing shootfly incidence in proso millet. Methyl demeton, phosphamidon and quinolphos effectively reduced shootfly infestation in little millet by 70, 65 and 63 per cent and recorded 42, 103 and 80 per cent more grain yield than the control. Endosulfan and BHC dusts also reduced shootfly incidence by 67 and 60 per cent and gave 300 per cent more grain yield than the control in little millet. In barnyard millet, quinolphos, methyl demeton and phosphamidon were effective in minimising shootfly infestation. Phosphamidon effectively reduced the incidence of dead hearts and white ears, besides recording 46 per cent more grain yield than the control in proso millet. Carbofuran 5 per cent as seed treatment besides checking shootfly in little millet was found compatible with biofertilizers (Azotobacter and Azospirillum). The shootfly infestation was reduced from 78 to 7.5 per cent and the grain yield was increased from 1.7 to 11.6 q/ha (Table 10).

TABLE 10
Effect of carbofuran seed treatment and biofertilizer on shootfly and grain yield in little millet, 1983-84

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dead hearts (%)</th>
<th>Grain yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% Carbofuran + Azospirillum + Azotobacter</td>
<td>7.5</td>
<td>11.6</td>
</tr>
<tr>
<td>5% Carbofuran + Azospirillum</td>
<td>13.3</td>
<td>9.8</td>
</tr>
<tr>
<td>5% Carbofuran + Azotobacter</td>
<td>19.1</td>
<td>8.8</td>
</tr>
<tr>
<td>5% Carbofuran</td>
<td>21.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Azospirillum + Azotobacter</td>
<td>33.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Azospirillum</td>
<td>40.6</td>
<td>3.3</td>
</tr>
<tr>
<td>Azotobacter</td>
<td>46.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Control</td>
<td>78.9</td>
<td>1.7</td>
</tr>
<tr>
<td>SE</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>CD 5%</td>
<td>4.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>
BIOLOGICAL CONTROL

After a survey of natural enemies, Kundu and Kishore (1971) reared out an eulophid wasp, *Aprostocetus* sp. from *Atherigona falcata*.

Insecticides were reported to be the most effective tools for controlling sorghum shootfly by Gupta and Pareek (1976). However, a harmonious combination of early sowing, judicious use of available chemicals combined with resistant varieties and effective parasites would be the appropriate solution in shootfly management.

PLANT PESTS

Stem borers on finger millet

ECONOMIC LOSSES

There are three stem boring caterpillars—pink borer, white borer and sorghum stem borer—in central and southern India. The borer of economic importance is probably pink borer. Krishnamurthi and Usman (1952) made detailed studies of the life cycle and economic loss caused by this pest to the finger millet in Karnataka. Infestation to the extent of 1 to 6 per cent was observed by them.

NATURE OF DAMAGE

The borers cause damage by initial feeding on the leaves and leaf whorls of plants and then by tunnelling the stem they cause dead hearts.

SOURCES OF RESISTANCE

Lingappa (1979) screened 248 varieties of finger millet and found three of them (IE 932, 982 and 1037) to exhibit resistance to pink borer. He detected more vascular bundles in susceptible lines. In resistant screening programme, 8 genotypes viz., PES 9, 144, 224, KM 1, 14, HR 228, JNR 1008 and T 36-B were observed to be resistant against pink borer (Kishore and Jotwani, 1980). Germplasm screening had demonstrated differential susceptibility to pink borer attack. Twelve lines showed resistance to pink borer (Table 11). Late varieties had greater incidence of pink borer and grey weevils than early and mid-late varieties.

CULTURAL CONTROL

The cleaning up and destroying of crop residues as well as alternate hosts help in greatly reducing the incidence and economic loss from stem borers. Borer population could also be minimised by timely removal of infested plants.

CHEMICAL CONTROL

Borers being internal feeders are difficult to control. The eggs are laid on or under leaf blades. The young larvae are extremely vulnerable to insecticides

...
TABLE 11
Promising finger millet genotypes resistant to different pests, 1980-86

<table>
<thead>
<tr>
<th>Pink borer</th>
<th>Earhead worms</th>
<th>Aphids</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM 1</td>
<td>Indaf 7</td>
<td>PES 176</td>
</tr>
<tr>
<td>RAU 1</td>
<td>Indaf 8</td>
<td>RAU 1</td>
</tr>
<tr>
<td>RAU 3</td>
<td>PR 202</td>
<td>HR 374</td>
</tr>
<tr>
<td>Indaf 7</td>
<td>PR 177</td>
<td></td>
</tr>
<tr>
<td>Indaf 8</td>
<td>HR 374</td>
<td></td>
</tr>
<tr>
<td>HR 374</td>
<td>HR 1523</td>
<td></td>
</tr>
<tr>
<td>HR 1523</td>
<td>PES 110</td>
<td></td>
</tr>
<tr>
<td>HR 154</td>
<td>PES 1877</td>
<td></td>
</tr>
<tr>
<td>PES 110</td>
<td>TNAU 1877</td>
<td></td>
</tr>
<tr>
<td>PES 400</td>
<td>TNAU 294</td>
<td></td>
</tr>
<tr>
<td>WR 9</td>
<td>VL 110</td>
<td></td>
</tr>
<tr>
<td>VL 110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

between hatching and stem tunnelling stages. Several chlorinated hydrocarbons, organo-phosphates and carbamates (e.g. BHC 10 per cent, endosulfan 4 per cent, malathion 4 per cent, carbaryl 5 per cent) have been shown to be highly effective in reducing borer infestation when properly applied during early stages of larval development especially in leaf whorls. In leaf whorl application only 12.5 kg/ha insecticidal dust is required as compared to 20 to 25 kg/ha recommended for foliar dusting. Granules of any one of the above mentioned chemicals could also be used for whorl application.

BIOLOGICAL CONTROL

A few parasites like *Apanteles flavipes*, *Bracon chinensis*, *Stenobracon* sp. have been reported (Krishnamurthi and Usman, 1952, 1954).

Earhead caterpillars on finger millet

NATURE OF DAMAGE

A complex consisting of a number of lepidopterous larvae infests the earheads at the maturity stage of the grains. Total damage varies considerably with the variety, the season and other factors. The more compact or tight-fisted cultures are generally more susceptible to the attack as they provide a congenial microclimate for the worms to multiply or to hide within the closed head.

ECONOMIC LOSSES

In Karnataka, Puttarudraiah and Channabasavanna (1950) identified *Cacoecia* sp. as causing severe damage to developing finger millet ears. David *et al.* (1962) recorded 5 different caterpillar species at Coimbatore, of which
Cryptoblabes sp., Eublemma sp. and Heliothis were found to cause extensive damage (26 to 38 per cent).

Management of earhead caterpillars

SOURCES OF RESISTANCE
Jotwani (1978) screened high yielding lines of finger millet and concluded that early maturing strains are less susceptible. A number of finger millet genotypes were field screened and 11 lines showing less susceptibility to ear worms were identified (Table 11). The earhead worms and leaf rollers were more on early than mid late and late varieties.

CHEMICAL CONTROL
Insecticidal trials carried out revealed that carbaryl, malathion, endosulfan, quinolphos and BHC dustings were quite effective in reducing the infestation of ear worms (Table 12).

TABLE 12
Chemical control of earhead worms in finger millet, 1980-84

<table>
<thead>
<tr>
<th>Dust formulation (15 kg/ha)</th>
<th>2 days after</th>
<th>8 days after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbaryl 5%</td>
<td>70.9</td>
<td>92.2</td>
</tr>
<tr>
<td>Malathion 4%</td>
<td>69.6</td>
<td>73.2</td>
</tr>
<tr>
<td>Endosulfan 4%</td>
<td>81.7</td>
<td>98.8</td>
</tr>
<tr>
<td>Quinolphos 4%</td>
<td>78.3</td>
<td>87.6</td>
</tr>
<tr>
<td>BHC 10%</td>
<td>67.5</td>
<td>93.3</td>
</tr>
<tr>
<td>Control</td>
<td>6.9</td>
<td>15.7</td>
</tr>
</tbody>
</table>

BIOLOGICAL CONTROL
A few parasites were recorded viz., Gonizious sp., Apanteles sp. and Phanerotoma sp. (Anonymous, 1975) on Cryptoblabes. Gahukar and Jotwani (1980) reported that naturally occurring predators and parasites keep Heliothis population under check.

Aphids

NATURE OF DAMAGE
The rusty plum aphid, Hysteroneura setariae, is often found infesting the leaves, stem and shoots in large numbers. Yield loss could be as high as 50 per cent in nursery stage (Nageshchandra, 1981).
Management of aphids

Sources of Resistance

Field screening revealed three genotypes of finger millet to be relatively less susceptible (Table 11). Aphids were found in higher frequency on midlate than early and late varieties.

Chemical Control

Endosulfan, penthoate, carbaryl (dusts), phosphamidon, dimethoate and monocrotophos (sprays) checked aphid incidence by next day, besides enhancing grain yields by 6.8 to 36.1 per cent (Table 13). Carbaryl dust controlled aphids by 15th day and had given 30.3 per cent more yield.

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Dose</th>
<th>Grading</th>
<th>Grain yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before</td>
<td>1 day after</td>
</tr>
<tr>
<td>Carbaryl 5% D</td>
<td>15 kg/ha</td>
<td>3.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Endosulfan 4% D</td>
<td>15 kg/ha</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Penthoto 4% D</td>
<td>15 kg/ha</td>
<td>3.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Malathion 4% D</td>
<td>15 kg/ha</td>
<td>2.7</td>
<td>0.4</td>
</tr>
<tr>
<td>BHC 10% D</td>
<td>15 kg/ha</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Quinolpos 4% D</td>
<td>15 kg/ha</td>
<td>2.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Phosphamidon</td>
<td>0.03%</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>0.03%</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Monocrotophos</td>
<td>0.03%</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Control</td>
<td>—</td>
<td>3.6</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Biological Control

Natural enemies which generally keep the aphid population under check include ladybird beetles (Chilomenes sexmaculata), the larvae of syrphid fly and the lacewing (Chrysopa basalis).

Occasional Insects with a Potential for Becoming Future Pests

Gall Midge (Orseolia sp.)

It is found on little and kodo millets. The spikelet infestation ranged from 3 to 50 per cent in little millet. The spikelets were found to be hypertrophied due to irritation caused by feeding of the maggots on the ovary. The pest is also of common occurrence in kodo growing areas of Madhya Pradesh.
Pink borer (Sesamia inferens)
Its occurrence on barnyard millet sometimes reached up to 30-35 per cent. Early planted crop suffered more damage. The pest is active from July to October.

Termites (Odontotermes sp. and microtermes sp.)
Proso millet suffers from the early stage when seeds are sown and even the portions above the ground are not spared. The attack is more pronounced in light sandy soils.

Leaf roller (Marasmia trapezalis)
The caterpillar, rolls the edges of the foxtail millet leaves and pastes them to form a tube and eats away the green matter from inside. Continuous wet weather seems to favour the multiplication of the pest.

Leaf hoppers (Cicadulina bipunctella bipunctella and C. chinai)
Leaf hoppers gained importance in finger millet in recent years because of their role in communicating finger millet mottle streak and streak viruses. The mottle streak virus is transmitted by both the leaf hoppers while the streak virus only by C. chinai.

Root aphids (Tetraneura nigriabdominalis)
This often appears on roots of finger millet during rabi/summer in southern India. The presence of root aphids at the base of the plant is usually indicated by the activity of ants. Up to 100 nymphs and 200 adults may be found on one plant. Dispersal is by alates and by ants (Camponotus campressus and Solenopsis germinata). The affected plants show water stress symptoms and seed setting is reduced.

A common feature of these occasional pests is that the incidence and population levels were fairly high in certain years. However, their economic significance is not fully understood. Therefore, more study is required on this aspect.

FUTURE STRATEGY

Shootfly species on small millets
The biology of different species should be studied and their population dynamics throughout the annual cycle must also be determined. The specificity of shootfly and the occurrence of alternate or collateral hosts need critical investigations. The available germplasm should be field screened in pest sick plots and then tested under artificial infestation to confirm field resistance.
Stem borers and earhead worms on finger millet

Work on different borer and ear worm species need to be intensified with regard to economic status of each species by determining the incidence and losses caused in different areas. Besides, research for natural sources of resistance must be continued.

Aphids on finger millet and gall midges and borers on small millets

Biology and ecology refinement and standardization of screening techniques and continued search for the sources of resistance deserve attention.

BIOLOGICAL CONTROL

Limited information is available on the natural enemies of pests infesting small millets. Critical studies are, therefore, required of key pests and their natural enemies. Surveys of natural enemies should be undertaken and their relative efficiency assessed.

CHEMICAL CONTROL

Under certain circumstances (epidermics), insecticides are necessary for obtaining desired level of control of pests. Obviously, insecticides will remain as a management component, but their use will have to be selective and judicious.

REFERENCES

CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS, DISEASES AND UTILIZATION OF SMALL MILLETS IN BANGLADESH

M.A. Majid, M.A. Hamid and Mannujan

INTRODUCTION

Kaon (foxtail millet) and Cheena (proso millet) are the two important small millets cultivated in Bangladesh. The acreage and production of these two crops were 36671 hectares and 31720 metric tonnes, respectively in the year 1983-84, with an average grain yield of 865 kg/ha. The low yield is due to poor soil, lack of high yielding varieties and inputs and non-adoption of improved cultural practices. Though the acreage under these millets has declined in recent years, they occupy an important position in the prevailing cropping patterns because of their short duration, wide adaptability and drought tolerance. Recognizing the role of small millets, Bangladesh Agricultural Research Institute has undertaken an integrated research programme on varietal improvement as well as improved cultural practices of these millet crops to develop a package of technology for increasing their production.

CROPPING SYSTEMS

Foxtail millet is grown both in kharif (monsoon season) and rabi (postmonsoon) either as a sole crop or mixed with other crops like chilli, aus (pre monsoon) rice or sesame. In Rangpur and Dinajpur districts foxtail millet is grown as a sole crop followed by transplanted rice. In Pabna, Kushtia and Faridpur districts foxtail millet is grown as a sole crop followed by jute. It is said that jute grows well in the soil where preceding crop was foxtail millet. Proso millet
is grown sole or mixed with mustard. Millets can easily be fitted to any cropping pattern including multiple cropping system in view of their short duration and photoinsensitive nature. The common millet based cropping patterns followed in different districts of Bangladesh are:

Thakurgaon, Rangpur and Dinajpur districts: Fallow-Foxtail millet-Transplanted Aman, Potato-Foxtail millet-Transplanted Aman

PRODUCTION TECHNOLOGY

Farmers practice

FOXTAIL MILLET

Normally, farmers plough their lands three times and use a seed rate of 9 kg/ha. The crop is sown in rabi in November/December and in kharif in February/March. Besides FYM, some farmers apply a little quantity of urea to supply nitrogen. Normally one to two weedicings are done.

PROSO MILLET

The land is ploughed 3-4 times and sown using a seed rate of 8 to 10 kg/ha. Proso millet is sown in November/December as a *rabi* crop. Some farmers apply FYM if available and rarely a little quantity of inorganic fertilizer primarily in the form of urea. Normally one to two weedicings are done.

IMPROVED PRODUCTION TECHNOLOGY

Field trials were conducted to find out the appropriate time of sowing, seed rate and fertilizer dose for millet crops. The findings are summarised below:

Studies on different row spacings and fertilizer doses showed no significant yield differences among row spacings 15, 25, 35 and 45 cm. However, significant yield differences were observed for different doses of nitrogen. Highest grain yield of 2678 kg/ha was obtained in treatment with 90 kg N/ha. In the trial on the effect of different seed rates and fertilizer doses on the yield of foxtail millet, 10 kg seed/ha gave the highest yield of 1920 kg/ha. Highest grain yield was obtained by the application of 60:45:45 kg/ha of N, P₂O₅ and K₂O.

Seed rate and manurial studies in proso millet showed that 8 kg seed/ha with 40:30:30 kg/ha of N, P₂O₅ and K₂O as optimum and gave the highest grain yield of 2360 kg/ha.

No significant yield difference between February 15 and March 15 sowing was found in case of foxtail millet.

It has been found that application of fertilizers, optimum seed rate and seeding time considerably influence the yield of millets but their response varies with the region, soil type and season.
PESTS AND DISEASES

Survey and monitoring of insect pests damage on proso and foxtail millet revealed the following:

Stemfly (*Atherigona miliaceae*) is the major insect pest but the damage of this pest is greater on proso than on foxtail millet. The extent of damage may vary from 15-25 per cent depending on the year, location and genotype. The other minor insect pests found in the millet fields are — stripe borer, pink borer, flea beetle, aphid and pentatomid bug.

Similarly commonly found diseases on millets are: Foot rot (*Sclerotium rolfsii*), leaf blast (*Pyricularia setariae*), leaf spot (*Helminthosporium* sp.), leaf and sheath blight (*Drechslera* sp.) and grain spot (*Phoma* sp., *Fusarium* sp. and *Curvularia* sp.).

Foot rot caused by *Sclerotium rolfsii* is an important disease and mortality is high on millet. The cultivars BPm-52, Islampur and Telipara of proso millet and Parameshpur and Shibnagar of foxtail millet were found to be resistant to this disease in screening tests.

UTILIZATION

Millets are mainly grown by the poor farmers for home consumption as a supplement to meet up the rice deficit. Grains can be dehusked either fresh or after par boiling. It is cooked solo or with rice and consumed like rice with vegetables or pulses. It is also consumed in the form of chapati or bread prepared from flour. Whole fried grain or its flour is consumed after mixing with ‘Gur’ (molasses) and salt. Various types of delicious cakes are prepared from flour of millets. Palatable sweet dishes like ‘Payesh’ and ‘Firney’ are made from dehusked foxtail millet mixed with milk and sugar.

The straw of millets are used as fodder, fuel and for thatching.
CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS, DISEASES OF FINGER MILLET IN NEPAL

Deep Man Sakya

Finger millet (Eleusine coracana Gaertn.) is cultivated extensively in Nepal ranking fourth in terms of area and production after rice, maize and wheat. Most of the production occurs in the hills in rainfed areas up to about 2500 m above mean sea level but it is more commonly grown between 1,000 and 2,000 m. It is also cultivated to a lesser extent in the terai (lowland areas). In Nepal finger millet is most frequently grown in association with maize as a relay crop. In some areas it is cultivated as a sole crop. Yields have declined from 1100 to about 900 kg/ha in the past decade.

Agriculture in the hills is very intensive and most farmers traditionally follow intricate cropping patterns that involve sequence cropping, mixed cropping and relay cropping with a wide array of different crops to meet their subsistence needs. It is a challenge for the farmers and the agricultural researchers to devise cropping/farming systems that fit both the physical environment and of the needs of the people living in the Nepal hills.

The more commonly grown cropping patterns that include finger millet are indicated in Table 1.

1) Transplanted millet as a relay crop (maize/finger millet)

Transplanting as a relay crop in the maize field is the predominant pattern of millet cultivation. The date of transplanting varies depending on the elevation and other environmental conditions and on the cropping pattern in use. At lower elevations finger millet is transplanted in the standing maize crop when the maize is between the tasseling and the mature grain stages. Under these conditions maize is usually planted during the last week of April and harvested
TABLE 1
Predominant cropping patterns in the major ecological zones of Nepal that include finger millet

<table>
<thead>
<tr>
<th>Ecological zone</th>
<th>Cropping pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terai and inner terai (up to 600 m.a.s.l.)</td>
<td>Early millet-paddy</td>
</tr>
<tr>
<td></td>
<td>Early maize-millet-wheat</td>
</tr>
<tr>
<td></td>
<td>Maize-millet-brassica oilcrop</td>
</tr>
<tr>
<td>Mid hills (600-2000 m.a.s.l.)</td>
<td>Maize/millet-wheat or oilcrop</td>
</tr>
<tr>
<td></td>
<td>Maize/millet-fallow</td>
</tr>
<tr>
<td></td>
<td>Millet-wheat + oilcrop</td>
</tr>
<tr>
<td>High hills (2000-2500 m.a.s.l.)</td>
<td>Soybean + millet-wheat or barley</td>
</tr>
<tr>
<td></td>
<td>Millet-barley-false cereal</td>
</tr>
<tr>
<td></td>
<td>Millet-potato-wheat or barley (in a 2 year pattern)</td>
</tr>
<tr>
<td></td>
<td>Millet + amaranthus-buckwheat</td>
</tr>
</tbody>
</table>

Symbols and terms used
- followed by
+ mixed with
/ relayed with
false cereals are buckwheat, amaranthus and quinoa

Source: Sherchan et al., 1986.

130-140 days later. At higher elevations the finger millet is frequently transplanted earlier, even before the initiation of tasseling of the maize plants. Such a procedure allows the millet to be harvested in time for the planting of a winter crop such as wheat, barley or oilseed brassica. When the maize crop is nearly mature, the lower leaves are frequently removed to allow maximum sunlight to reach the millet crop.

2) Transplanted millet as a monocrop

The growing of finger millet as a transplanted monocrop is a common practice in the terai and inner terai (1000 m.a.s.l. and below). Such a practice is more compatible with the cropping patterns in use in the terai. Monocropped finger millet yields are usually higher when grown as a mixed or relay crop. As soon as the finger millet is harvested a winter crop such as wheat, barley or oilseed is planted.

The yields of several finger millet varieties when grown as a monocrop and as a relay crop with maize are presented in Tables 2 and 3, respectively (Singh and Tamulonis, 1985).

3) Direct seeding of millet

Direct seeding is a much less popular practice of establishing finger millet crop and is practised either at low elevations or in the high hills of Nepal. In
D.M. Sakya 277

TABLE 2
Yield of finger millet varieties when grown as a monocrop at two locations (1985/86 season)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Khumaltar Yield (kg/ha)</th>
<th>Kavre Farm Yield (kg/ha)</th>
<th>Mean yield of both locations (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 1703-34</td>
<td>2422</td>
<td>1157</td>
<td>1789</td>
</tr>
<tr>
<td>NE 6401-26</td>
<td>1753</td>
<td>1341</td>
<td>1547</td>
</tr>
<tr>
<td>NE 1104-13</td>
<td>1365</td>
<td>1158</td>
<td>1261</td>
</tr>
<tr>
<td>NE 1001-1</td>
<td>1501</td>
<td>1329</td>
<td>1415</td>
</tr>
<tr>
<td>NE 1102-12</td>
<td>1142</td>
<td>1183</td>
<td>1162</td>
</tr>
<tr>
<td>NE 1304-1</td>
<td>901</td>
<td>1217</td>
<td>1059</td>
</tr>
<tr>
<td>Dalle-1</td>
<td>1762</td>
<td>1086</td>
<td>1424</td>
</tr>
<tr>
<td>Mean Yield</td>
<td>1549</td>
<td>1210</td>
<td>1380</td>
</tr>
</tbody>
</table>

TABLE 3
Yield of finger millet varieties when grown as a relay crop with maize at two locations (1985/86 season)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Khumaltar (kg/ha)</th>
<th>Kavre Farm (kg/ha)</th>
<th>Mean yield of both locations (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 6401-26</td>
<td>873</td>
<td>1528</td>
<td>1200</td>
</tr>
<tr>
<td>NE 3801-2</td>
<td>1559</td>
<td>1233</td>
<td>1396</td>
</tr>
<tr>
<td>NE 1304-1</td>
<td>664</td>
<td>1197</td>
<td>930</td>
</tr>
<tr>
<td>Okhale-1</td>
<td>1126</td>
<td>1309</td>
<td>1217</td>
</tr>
<tr>
<td>Mean Yield</td>
<td>1056</td>
<td>1317</td>
<td>1186</td>
</tr>
</tbody>
</table>

the terai, direct millet seeding is used in early millet-rice and millet-mustard cropping patterns.

FERTILIZATION

In the eyes of the Nepalese hill farmers, finger millet is considered as a crop that can be cultivated with low inputs and grown under stressful conditions. Fertilizer is generally not applied to the millet crop. If chemical fertilizer, farm yard manure or compost are used they will usually be applied to the maize crop. If finger millet is grown as a sole crop it is not uncommon for the farmer to apply farm yard manure at the rate of 5 to 10 tons per hectare.
HARVESTING AND POST-HARVEST OPERATIONS

Finger millet takes 120 to 200 days to mature from seeding to harvest depending on elevation, variety used and seasonal variations. Finger millet is usually harvested from late September to mid November. Harvesting is generally done in two stages. First the earheads are cut with a sickle and then the straw (stalk) is cut close to the ground. The earheads are put in piles, covered with cloth and left in the piles for 3 to 4 days. Heat develops in the piles and slight fermentation takes place. This helps the millet grain to separate easily from glumes.

The millet grain is removed from the cured earheads by hand threshing, by sticks or by driving bullocks over the earheads. Once the grain is well dried it is usually stored in locally made bins. Finger millet seed, if properly dried and stored, retains its viability for a long period of time, up to several years. It is not normally attacked by insects in storage.

DISEASES AND INSECTS

There have not been any systematic observations and assessments of finger millet diseases in Nepal because of the low priority thus far given to this crop. Based on limited surveys conducted by the Plant Pathology Division, blast (Pyricularia sp.) and leaf blight (Helminthosporium nodulosum) are the two important diseases in Nepal. Besides these two diseases, footrot and wilt, caused by Sclerotium rolfsii, were also recently recorded in the terai area and the incidence is sporadic.

Finger millet insect pests are also not well documented and control measures are virtually non-existent. The important insect pests are pink stem borer (Sesamia inferens) and grass hoppers (Chrotogonus sp.). Attack of army worms (Mythimna separata), resulting in significant yield losses, have also been occasionally observed.

REFERENCES

CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS, DISEASES AND UTILIZATION OF SMALL MILLETS IN SRI LANKA

S. Ponnuthurai

CROPPING SYSTEMS AND PRODUCTION TECHNOLOGY

The cropping system in Sri Lanka is determined by the availability of water for crop production. Accordingly, there are rainfed and irrigated cropping systems and a third category, a combination of both. The source of water for irrigation is from (1) river diversion projects, (2) reservoirs, and (3) underground water from open dug or tube wells. Millets are cultivated in the highlands under rainfed conditions in the southern, southeastern parts of Sri Lanka and in the north central province; agro-ecologically these areas come under the dry zone, where the average annual rainfall received is from 1270-1900 mm. Likewise, millets are cultivated in parts of northwestern, central and Uva provinces, and these areas fall under the intermediate zone, where the average annual rainfall is 1900-3175 mm.

Millet cropping systems in the dry zone

In the dry zone a major rainy season occurs during the period September to January and a minor one in April to July. Finger millet and foxtail millet are grown during the major rainy season (rainfall received is 760-890 mm) under the shifting forest fallow (chena) system. The size of the holding per farming family is about one ha. The shrub jungle is burnt and the seed is broadcast sown. The soil is harrowed to cover the seed. The farmer does not use any fertilizers or practise any pest or disease control measures. Incidence of pests and diseases are rather low. Not only millets, a mixture of millets and
cereals such as maize, sorghum, and vegetables are often grown under this system. Growth duration of millets is about four months. The earheads are collected as they mature in two or three harvests. Yield obtained ranges from 800-1000 kg/ha. In the minor (dry) rainy season common millet is cultivated following the same shifting forest fallow system. Rainfall received during the season is about 200 mm and not very dependable. The seed is broadcast sown and buried in soil by light harrowing. Minimum management practices are followed in this system of cultivation. Yield obtained varies from 400-700 kg/ha. Cultivation of sesame (Sesamum indicum) is also practised during this season. Cropping systems in these regions could be represented as follows:

\[
\text{Finger millet/foxtail millet} \rightarrow \text{Fallow} \rightarrow \text{Common millet/sesame} \rightarrow \text{Fallow}
\]

Under the river diversion projects in the southern, southeastern parts of Sri Lanka and in the north central province; high cash value crops such as chillies, pulses (green gram), maize, soybean and vegetables are grown and millets do not generally find a place in these cropping patterns.

Millet cropping systems in northern areas

In northern Sri Lanka (Jaffna District) several cropping patterns are followed both under rainfed and irrigated conditions. Cropping intensity is relatively high in this region compared to other areas in the dry zone. Farmers grow cash crops—onions, chillies, vegetables, potato, tobacco, cassava, etc. In some of the cropping patterns cash crops are followed by one or more millets, viz., finger millet, common millet or foxtail millet. In this region, the farm holdings are just around one fourth of a hectare and several cropping patterns are followed to utilize the farm resources and the available technology in the best possible way to maximise income. There is also an animal component in most of their farming systems. A few (about 3-5) head of cattle are usually maintained on these lands to enhance the soil fertility by supplying animal wastes such as cow dung, etc. These herds are shifted at short intervals within the holding to benefit the whole area alike.

As the wet season commences a green manure crop such as sunnhemp (Crotolaria juncea L.) is planted. At the time of flowering, this is ploughed in and the land is planted with potato or chillies which occupies the land from about four to seven months. This is followed by vegetables, onions and often some millets. Incorporation of cattle manure and compost to the soil, in addition to the inorganic fertilizer is often practised in this intensive farming system. This practice improves moisture retention and the fertility of the soil. It is with this intention that a green manure crop is often included in the cropping pattern.
Finger millet seedlings are raised in nurseries. At the end of 25 days or so the seedlings are uprooted and transplanted at random with one plant per hill. Prior to transplanting the field is sown with the seeds of Amaranthus spp. Ten days after transplanting, the crop is dressed with 15 to 20 kg N/ha and this is followed with an irrigation. By this time, the Amaranthus is ready for harvest to be used as leafy vegetable. A basin system of irrigation is followed and the source of water is open dug well. The period of finger millet cultivation is from May to August.

Irrigation frequency is about once in ten days, and 7 or 8 irrigations are adequate to reap the crop. Growth duration of the crop is 3½ months. Ripening of the earheads is uneven and at least 2-3 harvests are made at weekly intervals. The earheads are well dried and hand threshed. The grain is cleaned by winnowing with the help of hand winnowers. Yield obtained is about 2000 kg/ha. At Rs. 8/- per kg of grain the income derived is Rs. 16,000/- and the net profit per ha (less cost Rs. 6,000/-) would amount to Rs. 10,000/-. (1 US $ = Rs. 27/-). Millet though included in the cropping pattern is characterised by relatively lower net returns compared to that of cash crops such as potato, or chillies where the profit is Rs. 40,000/- to Rs. 50,000/- per ha. Millets straw is used as cattle feed. Finger millet is often planted as an intercrop when new banana plantations are established. This intercrop matures well ahead of the banana establishment and form a ground cover. (A. Senthinathan, personal communication).

Availability of much underground water in the region has made possible the growing of a number of crops the year round. Farm power, particularly for irrigation is costly. Land preparation and other operations are generally done manually with both family and hired labour. In the irrigable highlands, cropping pattern followed is as follows:

- Green manure
- Potato/chillies
- Vegetables (Egg plant, okra, tomato, pole bean cabbage, etc.)/onions/tobacco/pulses/millets and cassava.

In the low lying areas rainfed rice is cultivated during the period September to January. As the rice crop is harvested, the residual moisture is often made use of to raise a crop of pulses such as green gram, cowpea, millets or sesame; sometimes a mixture of some of these crop species are grown, during the period February-April. Thereafter the land lies fallow. Possible cropping pattern for the low lying and less intensive cropping areas are as follows:
In the cultivation of millets, the damage or crop losses due to pests and diseases is generally low. One of the reasons for the low incidence of pests and diseases is the type of cultivation practised. In the shifting forest fallow system farmers pay less attention in growing this crop. Burning of the shrub jungle prior to the cultivation helps to get rid of the insect pests and the disease pathogens. Sporadic cultivation does not favour the multiplication and carry over of the pests and diseases. After the cultivation of millets in the shifting forest fallow system, the land lies fallow and the chances of survival of the insect pest or the disease pathogen is less. Adherence to basic agronomic practices often help to prevent or decrease the severity of the damage caused.

Pests

Millets grown in the wet season, namely finger millet and foxtail millet sometimes suffer damage caused by leaf eating caterpillars and grass hoppers. Army worms (*Spodoptera marutia*) feed on leaf and at times cut the seedlings at the base. Extent of defoliation caused by this pest depends on the severity of infestation. Both nymphs and adults of grass hoppers feed on leaves. They also damage the earheads. Dusting with gamma BHC 10 per cent D at the rate of 20 kg/ha or carbaryl 85 WSP at the rate of 2.0 kg/ha controls the pest effectively. Stem borer damage to the crop occurs occasionally and the losses are not appreciable. Presence of the pest is identified by appearance of “dead heart” at the vegetative growth stage and the chaffy earhead with near erect fingers at the reproductive growth stage. Incidence of this pest has been observed both in the wet and dry season. Application of a systemic insecticide provides adequate control. Presence of aphids (*Aphis* spp.) has been observed in finger millet. Sometimes the infestation is very high and the plant parts affected are earheads, culms and the base of the culm near the soil surface. This can be considered as one of the major pests of finger millet. Aphid damage is observed both on the wet and dry season crop. Higher relative humidity and overcast skies are favourable environmental conditions for their multiplication. Affected plant at times becomes stunted. Earheads damaged by aphids produce poor quality grains. Some species of ladybird beetle and other insects have been found feeding on aphids. This pest is controlled by the timely application of a systemic insecticide (P. Mylvaganam, personal communication).
Bird damage (especially parrots) is often observed on foxtail millet at the time of maturity. Damage to growing seedlings by wild rabbits is also observed when finger millet is cultivated near shrub-lands.

Diseases
Blast and helminthosporium fungal diseases are often seen on finger millet and foxtail millet, in the wet season when favourable environmental conditions prevail. Careful agronomic practices help to minimise their incidence. Seed treatment, plant spacing and regulating the amount of nitrogenous fertilizer applied to the crop are important measures to minimize the occurrence of these diseases. Smut disease is seen on the earheads of common millet and this can be controlled by treating the seed with copper fungicide (Seneviratne and Appadurai, 1966).

UTILIZATION AND FORAGE USE
Millets form an item of supplementary food and is a poor man’s crop. The grain is ground to flour like rice or wheat and tasty preparations such as porridge, ‘pittu’, string hoppers and ‘roti’ are made. Prawns (shellfish) and sometimes vegetables and rice is added to the porridge. While making roti and ‘pittu’, coconut scrapings are added to the millet flour. Millet flour is mixed with wheat flour and used for making cake. Diabetic patients sometimes eat finger millet preparations instead of rice. Common millet ‘rice’ served with curries is very tasty indeed, and so is the porridge prepared from common millet ‘rice’. Common millet ‘biryani” is a delicacy. Hoppers, string hoppers which are common Sri Lankan foods, and all kinds of local sweet meats can be prepared from common millet flour (White, 1943). Some of the millets are better balanced food than rice, by virtue of their higher protein, fat and mineral contents. Food value of different millets is presented in Table 1.

Millets are sometimes used as poultry feed. Millets straw is usually relished by cattle when it is green and tender. Foxtail millet grains are sometimes used to feed pets such as parrots and other small birds that are kept in captivity.

ACKNOWLEDGEMENTS
Grateful thanks are due to the Director of Agriculture and the Deputy Directors of Research, Peradeniya, Gannoruwa and Kilinochchi for the encouragement and affording this opportunity to participate in this workshop. Thanks are also due to the IDRC for providing the necessary financial assistance.
<table>
<thead>
<tr>
<th>Name</th>
<th>Moisture</th>
<th>Protein</th>
<th>Carbohydrate</th>
<th>Fat</th>
<th>Fibre</th>
<th>Mineral</th>
<th>Calcium</th>
<th>Phosphorus</th>
<th>Calorific value (100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eleucine coracana</td>
<td>13.0</td>
<td>8.0</td>
<td>72.0</td>
<td>1.3</td>
<td>3.0</td>
<td>2.7</td>
<td>0.3</td>
<td>0.3</td>
<td>332</td>
</tr>
<tr>
<td>Finger millet (Kurakkkan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panicum miliaceum</td>
<td>11.1</td>
<td>13.71</td>
<td>72.26</td>
<td>1.76</td>
<td>0.10</td>
<td>1.07</td>
<td>0.01</td>
<td>0.2</td>
<td>341</td>
</tr>
<tr>
<td>Common millet (Panichchamai/Pani-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>varagu/Meneri)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setaria italica</td>
<td>11.9</td>
<td>9.7</td>
<td>72.4</td>
<td>3.5</td>
<td>1.0</td>
<td>1.5</td>
<td>0.04</td>
<td>0.3</td>
<td>353</td>
</tr>
<tr>
<td>Foxtail millet (Thinal/Thanahal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panicum miliare</td>
<td>11.1</td>
<td>13.4</td>
<td>72.3</td>
<td>1.8</td>
<td>0.1</td>
<td>1.1</td>
<td>0.02</td>
<td>0.3</td>
<td>360</td>
</tr>
<tr>
<td>Little millet (Samai/Heen meneri)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paspalum scrobiculatum</td>
<td>11.6</td>
<td>10.6</td>
<td>59.2</td>
<td>4.2</td>
<td>10.2</td>
<td>4.4</td>
<td>0.04</td>
<td>0.3</td>
<td>346</td>
</tr>
<tr>
<td>Kodo millet (Varagu/Amu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eragrostis tef</td>
<td>11.2</td>
<td>9.1</td>
<td>74.3</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinochloa frumentacea</td>
<td>11.9</td>
<td>6.2</td>
<td>65.5</td>
<td>2.2</td>
<td>9.8</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese barnyard millet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Protein</td>
<td>Fat</td>
<td>Fiber</td>
<td>Ash</td>
<td>Carbohydrates</td>
<td>Minerals</td>
<td>Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------------</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitaria exilis</td>
<td>6.0</td>
<td>8.7</td>
<td>81.0</td>
<td>1.1</td>
<td>1.1</td>
<td>2.1</td>
<td>Food Technologist's report: Department of Agriculture, Sri Lanka.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungry rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>13.2</td>
<td>7.5</td>
<td>76.7</td>
<td>1.0</td>
<td>0.3</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice (polished)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Food Technologists Report, Department of Agriculture, Sri Lanka (1986).
CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS AND DISEASES OF FOXTAIL MILLET IN CHINA

Chen Jiaju

INTRODUCTION

Foxtail millet has been grown in China for thousands of years. The technical aspects of production are well known to Chinese farmers and in the past 30 years, new technology has been introduced into agricultural production. Replacement of traditional cultivation methods can only succeed when proven economic effects are significant. The following are some of the main improved management practices in the production of foxtail millet in China.

CROPPING SYSTEMS

In China, foxtail millet is distributed in temperate and cool regions, where one crop in a year, 3 crops in two years and two crops in a year are possible. In order to increase the multiple crop index (cropping intensity), summer millet was popularized during the past 20 years. Of the total millet-growing area the share of spring millet is 85 per cent and summer millet is 15 per cent. Spring millet is usually grown after corn, sorghum, soybean or spring wheat; while summer millet is grown after winter wheat, barley, pea or rape. Repeated cropping of foxtail millet will cause decrease in yield. Therefore one crop of foxtail millet at an interval of three years has proven to be beneficial. Intercropping is not very popular but when adopted, millet occupies at least 2/3 of the area in the field to ensure sufficient light for the millet growth.
Land preparation

In order to facilitate the emergence of seedlings from the tiny seed, the plough layer should be finely harrowed. In semi-arid regions, soil moisture is the main restricting factor in the spring. The major techniques for keeping the soil moisture are deep ploughing to enhance seepage of autumn rain, soil compression in the winter and surface soil harrowing in the early spring. This important practice is the result of experience of farmers of Shanxi Province. Non-ploughing of the fields for summer seeding is necessary to avail an early seeding date.

Seeding

The choice of a proper seeding date is based on soil moisture and the growth durations of the varieties planted. In the past, say 30 years ago, the seeding dates began in April, but now they are generally delayed up to May. Tools for sowing vary with different cultural backgrounds. Drill sowing machines are widely used. Some new sowing techniques have been developed in Northeast China where traditionally wide row spacing is practised. One of the techniques is to sow seeds on the ridges in a wide strip or in 2-3 narrow strips. Hole (hill) seeding was developed for selected seeds to reduce the seed rate. Generally, 11 to 15 kg seeds per hectare is required. Seed placing depth is between 3 and 5 cm and, surface soil compression is needed after seeding.

Thinning

Thinning of seedlings is necessary as relatively large quantity of seeds are sown. Thinning is usually done about 20 days after emergence when seedlings have 4 to 5 leaves. Hand thinning is very slow and only 100-200 m² can be done per day. Seedlings are thinned leaving mounds of 3-5 plants spaced at 15 to 20 cm, or single plants in rows. Simplification of thinning method is one of the most important problems that researchers are working with.

Planting density

In the past, it was commonly accepted that low density would produce large ears. But when higher yield is required, higher density is beneficial, so adequate increase in planting density has been encouraged. The population maintained per unit area in different regions are summarized in Table 1.

Management during growing stage

The critical stage for applying fertilizer and water is from floret differentiation to microsporogenesis. Ammonium nitrate (NH₄NO₃) is applied at the rate of 150 kg/ha for normal production and for high yield field, more than 225 kg/ha can be applied at two stages, first at the start of internode elongation
TABLE 1
Planting density followed in different regions of China

<table>
<thead>
<tr>
<th>Region</th>
<th>Mode of planting and fertility status</th>
<th>Plant population per hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast</td>
<td>Ridge space 60 cm, 2 to 3 strips, low to moderate fertility</td>
<td>600-680 thousand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750-900 thousand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4-1.5 million</td>
</tr>
<tr>
<td>North and Northwest China</td>
<td>Row space 30-50 cm, low fertility</td>
<td>300 thousand</td>
</tr>
<tr>
<td>Inner Mongolia</td>
<td>Moderate fertility, Summer sown, early, very early variety</td>
<td>370-500 thousand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750-900 thousand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1-1.2 million</td>
</tr>
</tbody>
</table>

and again during the booting stage. Manuring and watering are combined with inter-tillage. The detection of associations among growth, development and leaf index have helped in developing efficient management methods.

High yield and integrated cultural technology

There are many successful examples; the Jinzhuany brigade which is located in a mountainous area in Shanxi Province has 26.7 hectares of spring millet. The yield has been stabilized at 6 tonnes/ha since the 1970’s. In some limited areas, 8.8 tonnes/ha has been obtained. In 1985, this experience was extended to 200 thousand hectares in Shanxi Province and the average increase of millet was 300 kg/ha. In the eastern part of inner Mongolia, the average yield of spring millet was 6.3 tonnes/ha for a total of 86.6 hectares in irrigated fields. In Shandong Province, standardized technology for foxtail millet cultivation was extended to summer cropping and the average yield reached 3.8 tonnes/ha for a total area of 267 thousand hectares. A book named “The Cultivation of Foxtail Millet in China” contains all the achievements and efforts of thirty years and written by a group of researchers from all over China. This book will soon be published.

DISEASE AND PEST CONTROL

Foxtail millet is susceptible to many kinds of diseases and pests. In epidemic years, the yield losses are severe. The main diseases and pests reported in China are given below:

Diseases

Blast (*Piricularia setariae* Nishik)
Leaf rust (*Uromyces setariae-italiae* (Peit) Yoshina)
Brown stripe (*Pseudomonas setariae* (Okabe) Savalesum)
Leaf spot (*Helminthosporium setariae* Sawada)
Downy mildew or green ear (*Sclerospora graminicola* Sacc. Schrect)
Kernel smut (*Ustilago crameri* Koern)
Red leaf virus disease
Nematode (*Aphelenchoides besseyi* Christic)

Pests

- Mongolian mole cricket (*Gryllotalpa unispina* Saussure)
- African mole cricket (*Gryllotalpa africana* Palisot et Boauvois)
- False wireworm (*Opatrum sabulos* Linnaeus)
- European corn borer (*Ostrinia furnacalis* Guenee)
- Millet stem borer, yellow sugarcane borer (*Chilotrace infuscatellus* Snellen)
- Millet flea beetle (*Chaetocnema ingenus* Baly)
- Millet stem maggot (*Atherigona biseta* Karl)
- Army worm (*Mythimna separata* Walker)
- Indian mallow bug (*Liorhyssus hyalinus* Fabricius)
- Foxtail millet webworm (*Mampava bipunctella* Ragonot)

Integrated control of diseases and pests is the main traditional method. However, chemical control is also used extensively. Biological control has been just started. Some of the methods followed in integrated pest and disease control are as follows:

1) **Rotation**

Crop rotation not only checks the soil borne diseases by preventing their multiplication, accumulation and spread but also helps in weed control particularly giant foxtail (*S. viridis* var. *major*).

2) **Seeding date adjustment**

Delaying the seeding date up to May is effective in controlling green ear, millet stem borer, etc. Summer millet should be seeded on an earlier date to avoid millet stem maggot.

3) **Growing resistant varieties to diseases and insect pests.**

4) **Seed treatment and field control**

Seeds are treated after drying under the sun, clearing all soot by fungicides. Metalaxyl (Ridomil) is a highly effective and low toxic fungicide for controlling green ear at an efficiency of more than 90 per cent. Phoxim, Bayer 5621 and Phorate 3911 can be used to fumigate the seed and Lindane mixed with seeds controls soil borne pests.

Phoxim and carbofuran are used to protect millet from stem borer, trichlorofen is used against army worm and dimethioate Acc-12880 for aphids.

The red eye bee is now commercially cultured and released into fields to control European corn borer and millet stem borer.
V

CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS AND DISEASES OF SMALL MILLETS IN AFRICA
IMPORTANCE AND DISTRIBUTION

Finger millet is an important cereal in Africa and Asia. In Uganda, finger millet is the second most important cereal after maize with an estimated annual area of over 330,000 hectares and annual production of over 450,000 metric tonnes (Table 1). It is grown throughout the country but the major production areas are in the interior plateau, between Mt. Elgon and Lake Kyoga, Northern and Western Uganda. Production reaches its maximum in Tesco, Bukedi and in the highlands of Kigezi. The crop is produced purely at subsistence level and has not attained commercial importance.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>260</td>
<td>342</td>
<td>285</td>
<td>393</td>
<td>295</td>
<td>413</td>
<td>347</td>
<td>281</td>
</tr>
<tr>
<td>Finger millet</td>
<td>300</td>
<td>480</td>
<td>330</td>
<td>528</td>
<td>341</td>
<td>545</td>
<td>332</td>
<td>223</td>
</tr>
<tr>
<td>Sorghum</td>
<td>170</td>
<td>320</td>
<td>200</td>
<td>258</td>
<td>207</td>
<td>407</td>
<td>206</td>
<td>164</td>
</tr>
<tr>
<td>Cassava</td>
<td>310</td>
<td>300</td>
<td>331</td>
<td>313</td>
<td>372</td>
<td>324</td>
<td>401</td>
<td>188</td>
</tr>
</tbody>
</table>

*Source: Ministry of Agriculture and Forestry, Entebbe, Uganda.
Finger millet is not important in the dry Karamoja area where sorghum is the principal food crop. Finger millet is the principal food grain of the Nilotic and Nilo-Hamitic tribes. It also forms an important item of the diet for the Bantu people in the western region and along the Nile in the north (Thomas, 1970). It is consumed as unleavened bread (ugali), porridge and used in making home brewed beer. Beer is regularly consumed by family members but also served to guests and in all ceremonial functions.

Although there is a close relationship between finger millet distribution and its association with different tribal groups, the extent of its production is decided by the availability of other foods. In areas of high rainfall, especially around Lake Victoria, crops like banana, sweet potato and maize predominate. The main zone of finger millet production is not suitable for other crops where conditions are more harsh either in terms of rainfall reliability or soil fertility. However, finger millet is gradually getting replaced by sorghum. This change is common in the north and northeast, but the proportion of each cereal will vary in the transitional periphery from a pure finger millet stand to a pure sorghum stand. In Kigezi, finger millet is gradually getting replaced by sorghum mainly because of higher yields of sorghum than finger millet on the fertile volcanic soils.

AGRONOMIC PRACTICES

Land preparation and place in rotation

Finger millet does best on relatively fertile soils but not on clay loams which have poor drainage. It grows best on well drained sandy loams particularly in areas where rains are well distributed during the growing season without prolonged droughts. It is grown in areas of 500-1000 mm rainfall and up to an elevation of 2400 m. It requires a fine seedbed.

Most commonly, finger millet follows cotton in crop rotation. In areas where cotton is not grown, millet follows sweet potato or groundnut or cowpea or sesame. In the cotton-millet rotation, the system is as follows:

<table>
<thead>
<tr>
<th>May-December</th>
<th>Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td>January-May</td>
<td>Millet</td>
</tr>
<tr>
<td>June-January</td>
<td>Cotton</td>
</tr>
<tr>
<td>February-June</td>
<td>Millet</td>
</tr>
<tr>
<td>July-September</td>
<td>Cowpea</td>
</tr>
<tr>
<td>March-August</td>
<td>Groundnut</td>
</tr>
</tbody>
</table>

Cassava normally follows groundnut. In a few cases especially on swampy land, finger millet is sown on newly opened land. In the western highlands, finger millet is grown during the second rains following sorghum, maize, peas or beans or a mixture of all these crops or sweet potato. In northern Uganda, the first crop in the rotation is sometimes sesame followed by cotton and
then finger millet. In Bugisu and western Uganda where population pressure is very high, continuous cropping is common. Finger millet may be grown in the first rains of every year and a second crop of beans or groundnut follows during the second rains.

Sowing, spacing and time of planting

All the finger millet in the country is broadcast. The cultivator usually uses a mixture of three to six distinct varieties but such a mixture is usually uniform for height and maturity period. This is done as a sort of insurance cover as no prediction can be made on the yield potential of any one variety in a given season at a given location. In cotton plots, finger millet is dry sown. The millet is broadcast on the standing cotton stalks, normally during the dry season in December/January. The seed is then scuffed in with a hoe. The seed remains dormant until the first showers are received, and then it germinates. However, this crop is subjected to a prolonged dry season after germination. Sometimes, the seedlings may die, necessitating a second sowing after the rains resume. The cotton stalks are uprooted soon after finger millet seedlings are established. If millet seedlings survive this moisture stress successfully, the yields are normally high. Also, the crop is harvested early enough to allow a following crop of cotton or sorghum or cowpeas to be planted.

More recently, the common practice is to skim plough the land after the rains are received and subsequently sow finger millet. To provide a firm seedbed and to cover the seed, a herd of cattle is driven over the seeded field. Alternatively, a tree branch with leaves may be used to cover the seed with soil. The seed rate is about 2.2 kg/ha.

The spacing of the seed depends on the ability of the farmer who is sowing. Normally dense populations give poor yields, while, a widely spaced crop tillers more and bears larger heads. Farmers are advised to space their millet at hoe width.

The timing of planting is very important. The millet grown from early December-February gives the highest yields.

Intercropping

Finger millet is always intercropped with two or more other crops. However, finger millet is always the predominant crop in the mixture. In the high rainfall areas, millet is intercropped with maize where maize is always eaten when cobs are green. In the low rainfall areas finger millet is intercropped with sorghum. This is a precaution against drought; if millet fails, sorghum will at least give some produce. In the northern part of the country, finger millet is always inter-sown with pigeon peas, sesame, cucumber, cowpeas or sorghum or a mixture of all these.
Weeding

This is the most laborious of all the operations. The millet is usually weeded twice depending on weed population. The first weeding is done 3-4 weeks after germination and the second weeding just before booting. However, most farmers weed only once because of scarcity of labour and other cultivation commitments. The weeding is normally done with small hoes, adzes or knives. Sometimes, weeds are removed by hand. Weeding is normally done by women. A weeding operation when done communally becomes faster where a few families join together and weed their fields in turn. Quite often, a family would prepare a meal or 'Ajono' (local drink) and call the neighbours to weed their field and they have the meal or Ajono in return.

During weeding, some thinning and transplanting may be done to reduce the plant density or gap fill as the case may be.

Harvesting and storage

The crop takes about four months to mature. It is harvested soon after ripening, as most local cultivars shatter, and are subject to bird damage.

The ears are cut with about two centimetres of stalk. A sharp hand or finger knife is used for harvesting. The harvested ears are kept in a pile for a few days to ripen the grain further and to give the desirable taste. They are then sun-dried.

Storage is done in granaries made out of reeds and mud walls.

Marketing

Finger millet is not produced for marketing and farmer will sell only the minimum amount that is in excess of his needs or when he is in urgent need of money. It can also be bartered for meat or other foods.

PRODUCTION CONSTRAINTS

Pests

Except birds and aphids, finger millet does not have any serious pest problems and apparently no research has been conducted on the control of pests on finger millet. Birds cause most damage just before harvest, especially on the white-seeded cultivars. The most common species are the Quelea and weaver birds. Mirid bugs, Taylorilygus sp. may damage the compact ears and bring in grain discolouration.

Among leaf eaters, grasshoppers, notably Chrotogonus spp. and Zonocerus elegans and black beetles can be a problem. The maize aphids, Rhopalosiphum maidis is quite important especially during the dry spells. Spora pests, the army worm, Spodoptera exempta is the most important pest of finger millet. If the attack by this pest is early immediately after establishment, there may be a total crop loss.
The stalk borers notably *Busseola* sp., *Sesamia* sp. and *Chilo* sp. affect the crop. The sorghum shootfly, *Atherigona* sp. can be serious, especially on later plantings and during dry spells.

Diseases

Until recently, finger millet suffered from few diseases (Leakey, 1970). However, today with intensive production, diseases are attaining economic importance (Esele, 1982). The most important disease is blast caused by *Pyricularia grisea*. The disease occurs throughout the country and in all other African and Asian countries where finger millet is grown. All stages of the plant are susceptible to its attack but the ear and the neck infection are the most important in Uganda.

In the farmers' fields, the disease causes not less than 10 per cent yield loss (Emchebe, 1975). On some collections at Serere, up to 80 per cent loss in yield was noticed (Esele, 1984). A programme at Serere is presently screening for resistance to this disease. Resistance exists in many materials developed at Serere. These are mainly the materials derived from the disease resistance breeding programme.

Another disease which has recently gained economic importance is *Cylindrosporium* leaf spot. The disease occurs around 60 days after planting and progresses towards maturity. Serious leaf spotting and lesion coalescing is observed which may impair grain development through the destruction of chlorophyll necessary for the synthesis of plant foods.

Tar spot (*Phyllachora eleusines*) consisting of small jet-black and slightly raised spots on the leaves and neck of the plant occurs towards maturity. Where tar spot and *Cylindrosporium* leaf spot occur together, serious defoliation is observed.

Virus-like infections also occur especially on later plantings. These are characterised by leaf streaks, stunting, yellowing of leaves and mosaic symptoms. Other diseases of minor importance include *Helminthosporium* leaf spot, bacterial blight and *Sclerotium* wilt.

A trial conducted at Makerere University on the fungicidal control of finger millet diseases in Uganda revealed that Benlate was the best fungicide for the control of blast and other leaf diseases (Adipala and Mukiibi, 1985).

Quality seed availability

Many farmers keep their own seed which is invariably a mixture of local cultivars. Farmers have experienced outcrossing in the field both between varieties and with ‘Ekitu’ (*Eleusine africana*) (Tribe, 1965). In addition, local varieties are variable yielders, doing better in some years. Besides, mixtures normally exhibit uneven ripening. Farmers therefore exercise care and select uniform ears and preserve this as seed for the next season. Farmers select the best heads in the field, cut them, dry and store them separately in long straw-
ed bundles. This practice has helped the farmer to carry forward varieties which he feels superior.

Today, there is an increasing trend towards adoption of improved finger millet varieties developed at Serere. In the north of the country, Engeny, Serere I and Gulu E are being grown by farmers. In eastern parts P 224 is getting widely adapted especially in areas around the Research Station. This is because of higher yields of the improved varieties over the local cultivars. However, the major constraint in the spread of these varieties is the availability of seed. The Uganda Seed Project under the Ministry of Agriculture, has the mandate to multiply the seed and make it available to farmers through extension and cooperative services. Unfortunately, the project has had some economic problems and is presently unable to function satisfactorily. The only improved seed currently available to farmers is the one that is multiplied on a limited scale at Serere. In 1983, Serere made available to farmers over 5,000 kg of improved finger millet seed.

Adoption of new technologies

Finger millet depletes soil fast. It is therefore necessary to follow strict rotational regimes or application of fertilizers and other recommended practices. Owing to the weakening of the extension service, it has been difficult for farmers to pick up the newly developed technologies. As a result, broadcasting of seed, late and/or staggered planting, interplanting, scant or late weeding and absence of fertilizer application, continue to be done. The dissemination of information on new crop varieties has been poor. In surveys carried out in 1975, 1981 and 1985, not many of the farmers interviewed had heard of improved varieties and even less actually grew them. All the farmers had heard of row planting but were not practising it except for cash crops (Oryokot, 1985). However, since 1985, Serere researchers have started a Farming System Research Programme aimed at extending the developed materials and technologies to the farmers. Useful results are expected.

THE LABOUR BOTTLENECK

Finger millet is a crop whose production requires plenty of labour especially during weeding and harvesting. Owing to the nature of its production at subsistence level, the only labour force available to the farmer is his household. In addition to this, the farmer also produces a number of other crops at the same time such as groundnut, sesame, cassava, cotton, etc. The net result is that the millet crop does not receive the second weeding or timely weeding.

AGGRESSIVE WEEDS

The most troublesome weed in finger millet is its relative *Eleusine africana*. The aggressiveness of *E. africana* is compounded by its close resemblance to finger millet in the vegetative phase, which allows it to grow vigorously in
cultivated plots till a very late stage by which time it is too late to weed it out (Thomas, 1970). The weed also matures early—at least three weeks earlier than the crop and shatters immediately, disseminating its seed. It is especially important to check this weed in less fertile soils and on continuously cropped land.

LIMITED USE

Finger millet is only produced for food and beer. There are no proposals for its diversified utilization. If its use can be diversified in poultry and livestock feed formulations and as forage, then its production would definitely increase. Diversified uses in making recipes, biscuits and pastries would further increase the level of importance of this crop.

REFERENCES

CROPPING SYSTEMS AND PRODUCTION TECHNOLOGY

After the improved cultivars are developed, the emphasis will be on refinement of agronomic practices as traditional practices followed contribute to low yields.

Finger millet requires a longer growing season than most currently recommended sorghums or pearl millet. In Zimbabwe's highveld a growing period of up to 150 days is usual (Johnson, 1968). In drier conditions, however, it can ripen in about 120 days (Masefield, 1949). For maximum yield finger millet requires unrestricted moisture supply for about 10 weeks after its germination in January or February. That is why in Zimbabwe it is grown most widely in the wetter areas in Natural Regions II and III. It can withstand moist weather but dry sunny weather is required during ripening (Johnson, 1968).

As regions II and III happen to be maize growing areas, finger millet tends to be pushed to poorer soils of low fertility, where reasonable yields can be obtained as compared to maize. The best soil for the crop are fertile soils ranging from medium sand to fairly heavy clays. The crop also seems to be tolerant to both acidity and alkalinity.

In Zimbabwe, traditionally finger millet is intercropped with other crops. However, it is often grown in pure stands. It is intercropped with maize, sorghum, groundnuts and beans or cowpeas. One factor which must be considered while rotating finger millet is its susceptibility to witchweed (Striga asiatica). It is usually grown after a well fertilized crop since it uses residual fertility efficiently.
When grown as a sole crop, finger millet sometimes is put on virgin land and usually no fertilizer is applied. Better land preparation resulting in fine seed-bed will ensure better crop stand. The common traditional practice is to broadcast the seed and a brushwood is drawn over the field to cover the seed. Finger millet responds to both fertilizers and manures (Johnson, 1968). Nitrogen increases tillering and number of ears per plant and tends to accelerate the growth of early and intermediate tillers more than that of late ones. Table 1 shows the fertilizer recommendations made for finger millet in Zimbabwe. For better plant stand, seed treatment is recommended before planting with fungicide Deildrin. Pre-soaking in water up to 24 hours, is sometimes done and then the seed is dried in shade. This results in quicker germination. Early planting is recommended as finger millet requires a long growing period.

TABLE 1

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0-30</td>
<td>30-50</td>
<td>50-80</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>20-30</td>
<td>30-60</td>
<td>60-90</td>
</tr>
<tr>
<td>K₂O</td>
<td>0</td>
<td>30-50</td>
<td>50-90</td>
</tr>
</tbody>
</table>

Dry seeding is possible and convenient. The crop can also be transplanted. In Zimbabwe, transplanting is done only to fill up the gaps. It is recommended that the crop be row-planted in a continuous stream in 20-40 cm rows, using a wheat drill or a maize planter with suitable plates or by dribbling out the seed from a bottle in pre-marked rows. It is best planted when sown from 0.6 to 1.5 cm deep, using 5-8 kg seed per ha and covered with a roller or brush-harrow.

WEED CONTROL

When seed is broadcast, weeding has to be done by hand and this is time consuming. In early stages, it is difficult to distinguish rapoko grass (*Eleusine indica*) and finger millet. So, it is necessary to wait for three to five weeks till the weed becomes darker than the crop (Howder, 1965). It is also difficult to apply herbicides because of this rapoko grass. However, 2, 4-D can be used, and this can be effective on weeds like striga.

HARVESTING

Harvesting is done manually by cutting the ears and drying them before threshing. Finger millet stores well, resisting insect damage up to four years.
in the granary when the ears are stored unthreshed. If grain is required for planting, or for malting it should not be kept for more than 18 months as viability reduces to 50 per cent after 2 years of storage. Finger millet will not shatter even if harvesting is delayed due to rains. However, lodging can be a problem. It can also be harvested using combines.

Agritex (Agricultural Technical and Extension Services) is educating the farmers on the improved management practices. Demonstrations in the communal areas have helped to make the farmers accept these practices. The present market price is $300/tonne and this is bound to boost the production.

Pests and diseases

In Zimbabwe, pests are not so serious on finger millet, both during the growing period and in storage. The red-billed quelea bird can be a problem towards harvest at late stage. Army-worm (Spodoptera exempta) will attack finger millet in preference to virtually all other crops (Johnson, 1968).

Maize ladybird (Epilachna sinitis) can be controlled by giving 50 per cent Malathion as a cover spray, rapoko bug (Ischnodemus congobensis) and grasshoppers can be controlled by spraying 85 per cent carbaryl at 0.5 per cent concentration. Rats can be a problem in storage.

Although no diseases of importance are recorded on finger millet in Zimbabwe, the streak virus and leaf blight may become significant in the future.

Utilization

In Zimbabwe, finger millet is mainly used for brewing beer (hwahwa) as well as for preparation of thin (maheu) and thick (sadza) porridges. The farmers retain most of the produce and as the crop is a controlled product, the excess produce is sold to the Grain Marketing Board.

Finger millet has lower nutritional value than maize or other tropical small grains (Table 2). It is however, much richer in calcium and has the same effects as pearl millet and barley in counteracting the softening effects of maize in pig rations. Although not recommended for growing pigs, the ground grain of finger millet can constitute up to one half of the grain ration of breeding pigs and baconers after 54 kg live weight (Calder, 1966).

Food preparations

i) **Flour preparation:** The mature dry grain is pounded to remove the glumes and whole grain is ground into flour in a stone grinder or more often these days, in a grinding mill. Roasting before milling improves the flavour of the flour. No dehulling is necessary.

ii) **Thin porridge (maheu):** The flour is mixed with water to form a thin porridge, and a small quantity of fermented flour is added as a starter and kept in a warm place for a day. This is added to boiling water with constant
stirring to obtain a smooth thin porridge. This is allowed to cool and drunk as a refresher. Other thin porridges (bota) also have medicinal uses.

iii) **Thick porridge (sadza):** Prepared by adding flour to boiling water with constant stirring until a thick consistency is obtained. This is served with meat, vegetables or milk. Pregnant women eat this in preference to maize sadza because of the high calcium content.

iv) **Traditional beer:** The malted grain is fermented for up to seven days. It is preferred to pearl millet beer as it is not accompanied by head-aches and there is little hangover.

Alternative uses

Some food processing companies in Zimbabwe are carrying out analytical tests on finger millet grain to explore possibilities of using it to make products like baby cereals, flakes and biscuits.

Forage use

Although finger millet is never grown primarily for forage in Zimbabwe, after harvest the cattle are let into the fields before the rest of straw is ploughed in.

REFERENCES

CROPPING SYSTEMS
PRODUCTION TECHNOLOGY AND UTILIZATION OF SMALL MILLETS WITH SPECIAL REFERENCE TO FINGER MILLET IN KENYA

C. Mburu

CROPPING SYSTEMS

Millets in most parts of Kenya are grown traditionally and rarely as major food crops. Among millets, sorghum is an important crop. However, in some areas around Lake Victoria (in striga-stricken areas) and in the eastern parts of country which is hot and dry, farmers grow millets other than sorghum as major cereals. For example, in Busia district bordering Uganda, many farmers grow finger millet as their sole cereal. In Kitui and Machakos districts of the eastern province some farmers plant pearl millet as the sole cereal. Otherwise maize has dominated most areas which earlier used to be under sorghum and millets.

The present practice of growing small millets is to plant them in small patches in pure stands. For example, farmers in western Kenya plant small areas, less than half an acre with pure stands of finger millet just outside their homesteads. In the eastern province and in parts of central province it is common to see small patches of pearl millet or small millets scattered in farmers fields amidst other crops.

Often millets are intercropped with other crops. Finger millet which is common in western Kenya is often grown mixed with maize, sorghum or both. Sometimes, it is intercropped with cassava, or relayed with cotton; the first crop being millets. Pearl millet, which is common in eastern Kenya is intercropped with sorghum and/or maize or with cassava in coastal regions. Generally the intercrops are of no defined ratios.
The practice is to plant finger millet either with the onset of the long rains in March-April, or dry planted in January-February. Finger millet is rarely planted during the short rains which occur in December. In the western side of the country, with the onset of the short rains, land may be planted with sorghum, cotton or even maize. The other millets being more drought tolerant can be grown during the long rains or short rains or both. As the rainfall received in the short rains is low in the eastern side, sorghum, pearl millet and the other millets can follow the long rain crop.

In most parts of the Rift Valley, the rains are monomodal in nature and thus the millets especially finger millet mixed with maize can only be grown during that season. Due to the cold weather prevailing in these areas these crops take a long time to mature.

PRODUCTION TECHNOLOGIES

Most of the millet growing farmers are small farmers who use manually or oxen drawn ploughs for land preparation. Fields meant for millets are rarely adequately prepared to the required tilth.

The local cultivars that have been selected over the years by farmers are grown. They are medium to tall in stature, late in maturity and poor yielders compared to the improved cultivars which give seed yield up to 2500 kg/ha. However, with good management some local cultivars namely Ekalakala, Ikhulule and Gule-E have given as much seed yield as improved varieties in research stations.

Sowing is done by broadcast after digging or ploughing and re-dug to cover the seeds or left as it is after sowing. Often farmers use old seeds which fail to germinate resulting in poor plant population.

No fertilizer or chemical is used in millet cultivation. After germination, no thinning is done. The crop is often very much weed infested as only one weeding is done. Control of insect pests and diseases are very rarely done. Birds are a menace to millet crops and the only remedy is to scare them manually which is tedious and laborious. The decrease in area under millet has resulted in enhanced bird damage on these crops.

Harvesting is done by removing ears using a curved knife. The ears are then dried and threshed. Threshing is done by beating with sticks. This is true for all millets including sorghum. The produce is stored in baskets or tins or bags or in granaries.

Occasionally some farmers use ash as seed dressing in grain storage. However, small millets do not have problems of storage pests.

The Government of Kenya has of late been putting a lot of emphasis on sorghum and millets development under a National Programme for Research and Improvement of Sorghum and Millets (PRISM). Research is being carried out to improve the varieties and to develop improved agronomic practices.
Many varieties of finger millet have been developed and evaluated. Some of the promising varieties are—P 283, P 224, P 221 and Serere 1 and a few others introduced from Uganda. Similarly in foxtail millet and proso millet the varieties ISE 285 (from India) and N 40101 (from USSR) respectively have shown promise.

Agronomic work is in progress to develop suitable packages for both eastern and western Kenya taking into account the major problems of these areas, the constraints of the farmers and the over-riding need to minimise the risk rather than maximizing yields. Mostly the work is on determining optimum plant population, fertilizer doses, sowing time and timely weeding.

UTILIZATION

Millets in Kenya are grown for both home consumption and for sale in its local market. Grain is ground to flour and used in making porridge and cake like preparations (Ugali); a common food for the people of Kenya.

Finger millet is used in brewing a local drink ‘Busaa’ which is very common in western parts of Kenya especially during festivals. It is fermented after germination, it is then added to a mixture of water and flour of either maize or sorghum.

The flour of finger millet, depending on the availability, may be used alone or with other flours like maize or sorghum or cassava. Taste of millets including finger millet usually is not very appealing compared to other more favoured flours such as maize or wheat. Kenya’s Industrial Research and Development Institute is looking into ways of processing for preparing better food stuffs from millets. It is anticipated that millet can be used to prepare better food products than that is prepared from maize or wheat in view of its higher mineral content, especially in the preparation of infant and baby foods.

The stalks of finger millet are rarely used for feeding animals. Otherwise, they are left in the field or used as firewood.

CONCLUSIONS

It is evident that the small millets have not lost their popularity with the Kenyan peasants. There is a lot of germplasm to be collected and conserved. The low yields presently realised is mainly due to genetically poor varieties and poor agronomic practices accompanying their cultivation. Areas marginal for maize, the hot dry areas in the east, the waterlogged, striga sticken areas in the west around Lake Victoria, the coast, and the cold highlands of the Rift Valley are cropped with millets. With better processing and utilization avenues; evolution of improved cultivars and methods of cultivation the small millets production is likely to increase.
CROPPING SYSTEMS, PRODUCTION TECHNOLOGY, PESTS, DISEASES, UTILIZATION AND FORAGE USE OF MILLETS WITH SPECIAL EMPHASIS ON TEFF IN ETHIOPIA

Seyfu Ketema

CROPPING SYSTEMS

Teff is the most important cereal crop in Ethiopia. Like many cereal crops, it is cultivated predominantly under a monocropping system. However, in a few areas it is cultivated under multiple cropping system with Brassicas, safflower or sunflower as intercrops. Also it is relay cropped with maize. This is done by removing lower leaves from maize after the cob is formed and then teff is sown in between maize plants. Not much research has been done on multiple cropping systems using teff. This needs to be studied more thoroughly as multiple cropping has potential to enable the farmer to maximize the utilization of resources in his farm.

PRODUCTION TECHNOLOGY

At the present moment teff is produced mainly by farmers and not in state farms. Farmers practise traditional methods of land preparation using an oxen drawn plough.

Seed bed preparation

Teff seeds are very small and should not be sown deeply. They have to be left on the surface or covered very thinly. This means teff needs a very smooth seed bed. If harvesting is to be done by combine, the practice of pack-
ing the seed bed before sowing has been found useful since most of the pre-
sent day teff cultivars lodge at maturity.

Seed rate

Fifteen to 55 kilograms of seed can be sown per hectare. If sowing is to be
done by hand broadcasting, it is difficult to evenly distribute 15 kilograms of
seed per hectare. Therefore, 25-30 kg seeds per hectare are recommended.
If a manually or motor-driven broadcaster or drill is available, lower seed rates
of around 15 kg/ha are preferable.

Fertilizer rate

Systematic studies on the fertilizer requirements of teff under different con-
ditions have not yet been conducted and completed. For the time being the
following recommendations are made in Ethiopia.

- On heavy clay soil (vertisol) — 60 N : 26 P₂O₅ kg/ha
- On sandy clay loam soil — 40 N : 26 P₂O₅ kg/ha

Sowing date

Teff can be sown in a season when the rainfall is reliable and well
distributed. For most cultivars 300-500 mm of rainfall per growing season is
adequate. Early maturing varieties (60-80 days) can do with less than 300 mm
of seasonal rainfall. It germinates and establishes quickly on lighter sandy clay
loam soils than on heavy clay soils.

Weeding

Hand weeding once at early tillering stage (25-30 days after emergence)
is ideal and adequate if the weed population is low. Under heavy weed popula-
tion hand weeding has to be done for the second time at the stem elongation
stage. Hand weeding after heading is not recommended since heavy damage
may be caused to the plant.

Application of presowing herbicide Gesatan 500-FW (Ametryne 25 per
cent + Prometryn 25 per cent) at the rate of 2 to 4 kilograms per hectare
two weeks before sowing teff is recommended. It gives good control over both
annual grasses and broad leaved weeds.

Post-emergence herbicides — 2, 4-D 720, MCPA 625, 2,4-DDP and Brito
× 52 (Bromoxynil + Ioxynil + mecopropester) at the rates of 1.5, 3, 5 and
2.5 litres per hectare, respectively give satisfactory control of broad leaved
weeds.

Harvesting

The crop is harvested when the green colour of the plant disappears and
the vegetative parts turn yellowish or straw colour. This depends on the maturity
period of the varieties which varies from 60-120 days. Harvesting before the
plant is too dry helps to prevent field loss due to seed shattering.
Post-harvest management

Teff seeds are not attacked by weevils or fungi. Therefore, they do not need protective chemicals in storage.

PESTS AND DISEASES

In the main teff growing areas of Ethiopia pests and diseases are not serious problems. And teff is considered to suffer less from diseases in its major production centres than most other cereal crops in Ethiopia (Stewart and Dagnatchew, 1967). However, teff rust (Uromyces eragrostidis Tracy) and head smudge (Helminthosporium miyakei Nisikado) are reported as the most important diseases on teff (Stewart and Dagnatchew, 1967; Tareke, 1981). These diseases are considered to cause significant loss in yield in humid south western parts of Ethiopia. No control measures for these diseases has so far been developed. One pest that can at times be severe is central shootfly (Hylemya arambourgi). Seed dressing before sowing with 40 per cent Aldrin WP at the rate of 50 grams for 10 kilograms of seed is recommended.

UTILIZATION

In Ethiopia, teff is mainly grown for its grain. The flour is most widely used for making a pancake called 'enjera'. It is also used for making porridge and native alcoholic drinks called 'tella' and 'katikalla'. Its straw is used for reinforcing mud plastered walls of tukuls (Tadese, 1969; Rouk and Melak Hail, undated). Its straw is used as feed for cattle.

The nutritive value of teff grain compares well with some of the major cereals such as wheat, barley, rice, maize and sorghum. According to Rouk and Melak Hail (undated), the Ethiopian nutrition survey (1959) reported that four unspecified varieties when analysed biochemically were found to contain an average of 300 calories, 11.6 grams protein, 0.65 grams fat and 70.56 grams carbohydrate per 100 grams and that teff supplies an average two-thirds of the total protein in the Ethiopian diet. Also, Melak Hail (1966) reported that some samples of teff when analysed contained higher amounts of calcium, copper, zinc, aluminium, sodium and barium than that is present in samples of winter and spring wheats, barley and grain sorghum. Thus, though not consumed world-wide, the nutritive status of teff is comparable to that of the major cereals.

Teff is used for making “enjera” and alcoholic drinks too. Often, teff is mixed with other cereals before making “enjera” but enjera from pure teff is greatly preferred. The procedure of preparing ‘teff enjera’ is described on p. 312.
Small Millets

Teff engera preparation—Ethiopian Nutrition Institute (1980)

Ingredients

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teff flour</td>
<td>3 kg</td>
</tr>
<tr>
<td>Ersho* (yeast)</td>
<td>480 g</td>
</tr>
<tr>
<td>Water for dough</td>
<td>6000 L</td>
</tr>
<tr>
<td>Water for baking</td>
<td>4000 L</td>
</tr>
</tbody>
</table>

Cooked product

| Number of enjeras | 18 |
| Weight of one enjera | 450 g |

(Note: *Ersho = A starter which is a dough saved from previous fermentation and it is used for starting fermentation in new dough)

Preparation of the dough

1) Sift the flour into a container large enough to hold the entire recipe.
2) Stir in the ersho. Use a large wooden spoon or the hands.
3) Add three litres of water and mix well. Add three more litres of water gradually stirring all the time. Use either a wooden spoon or hand. Mix well.
4) Cover the dough and allow it to stand for three days to ferment.

Baking of the enjera

1) Pour away the water that has settled on top of the dough
2) Add 1/2 litre of dough to 1 litre of water and boil.
3) Mix 3 litres of cold water into the dough. Stir in the hot mixture and allow to stand for 30 minutes.
4) In the mean time heat the metad* (enjera oven)
5) To bake enjera, pour the batter on to the hot greased metad using a circular motion from outside towards the centre to make a circular enjera. When holes begin to form on top of the enjera, cover with the akenbalo** (enjera oven lid) and bake for 2-3 minutes. Use about 1/2 litre of batter for each enjera.
6) Grease the metad with oil between each baking. Repeat the above process until all the dough is used.

The comparison of nutrient content of 100 g enjera made of teff and wheat is given in Table 1. The other important points to be followed in enjera preparation are:

1) Although no longer customary, oil can be added to the dough at the same time as the boiled water. Oil improves the appearance of the underside of the enjera. It becomes more shiny.

(Note: *Metad = A flat round clay griddle of enjera oven that is used for baking enjera.
**Akenbalo = The lid of the enjera oven (metad). It is used to cover the oven when the enjera is baking. It is usually made of clay and should be air tight)
<table>
<thead>
<tr>
<th>Energy (Calories)</th>
<th>Moisture (%)</th>
<th>Protein (g)</th>
<th>Fat (g)</th>
<th>Carbohydrate (g)</th>
<th>Fibre (g)</th>
<th>Ash (g)</th>
<th>Calcium (mg)</th>
<th>Phosphorus (mg)</th>
<th>Iron (mg)</th>
<th>B-Car. Equiv. (mg)</th>
<th>Thiamin (mg)</th>
<th>Riboflavin (mg)</th>
<th>Niacin (mg)</th>
<th>Ascorbic Acid (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teff</td>
<td>162</td>
<td>59.8</td>
<td>4.2</td>
<td>0.6</td>
<td>33.9</td>
<td>1.7</td>
<td>1.5</td>
<td>64</td>
<td>129</td>
<td>30.5</td>
<td>0</td>
<td>0.21</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>Wheat</td>
<td>172</td>
<td>57.4</td>
<td>5.4</td>
<td>0.9</td>
<td>35.6</td>
<td>0.9</td>
<td>0.7</td>
<td>28</td>
<td>135</td>
<td>3.3</td>
<td>0</td>
<td>0.14</td>
<td>0.99</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Ethiopian Nutrition Institute, Addis Ababa.
314 Small Millets

2) Teff flour is most commonly used but barley, wheat, corn, finger millet and sorghum flours may also be used.

3) The length of fermentation depends on the climate, where the climate is hot, enjera is baked on the same day as the dough is mixed.

4) The dough should never be fermented for more than 3 days or it will become too sour and might cause gastritis. Besides, the longer the fermentation time higher the destruction of nutrients.

FORAGE USE

Teff is not mainly grown for forage nor is the production of forage of any kind widely practised in Ethiopia. Hence, there is a shortage of feed during the dry season. When teff is grown for its grain, its straw is a very important source of feed especially during the dry season. Cattle prefer teff straw more than the straw of any other cereal.

According to Burt-Davy (1913), “the chief value of teff as a hay crop lies in its palatability, high nutritive value, narrow albumain ratio (for a grass hay), high yield, rapid growth, drought resistance and ability to smother weeds”.

According to Tadese (1969), teff is found to produce more than twice as much forage as weeping lovegrass (Eragrostis curvula) producing an average of 14.5 tonnes of green material per hectare within 3 months. This shows that teff has a great potential to be improved through breeding and put to use for forage production in addition to its use as a cereal crop.

REFERENCES

FINGER MILLET CROPPING SYSTEMS AND MANAGEMENT PRACTICES IN TANZANIA

R.O.F. Mwambene

INTRODUCTION

Millets and sorghum are the traditional grain crops in East Africa. Although they have been displaced by maize in many places, they are still the staple food crops in some areas. The term millet refers to several species of grain plants and, the usage changes from place to place. In East Africa, the major millet crops of importance are:

<table>
<thead>
<tr>
<th>English</th>
<th>Latin</th>
<th>Swahili</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger millet</td>
<td>Eleusine coracana</td>
<td>Wimbi/Ulezi</td>
</tr>
<tr>
<td>Bulrush millet</td>
<td>Pennisetum typhoides</td>
<td>Mawele/uwele</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Sorghum bicolor</td>
<td>Mtama</td>
</tr>
</tbody>
</table>

Finger millet is the only small millet on large scale production in Tanzania. The main areas are Rukwa and Mbeya regions in the southern highlands of Tanzania and Mara region on the eastern side of Lake Victoria. It is also grown to a lesser extent in Kilimanjaro, Kondoa, Iringa and Ruvuma districts.

The exact area under finger millet in Tanzania is not precisely known as all government records include finger millet along with sorghum and other millets. A case study of finger millet production in the Ufipa Plateau of Rukwa Region, the major finger millet growing area in Tanzania revealed that nearly...
half of the total area is always cultivated with finger millet (Ulvund and Mkindi, 1976).

CULTIVATION PRACTICES

The natural condition of land used for cropping differs from place to place. Table 1 shows the frequency of different types of vegetation present before the cultivation of finger millet. The cropping duration of the agricultural land which varies from village to village is given in Table 2. Most land is allowed to regenerate natural vegetation 3 to 5 years after clearing.

TABLE 1

<table>
<thead>
<tr>
<th>Village</th>
<th>Bush</th>
<th>Forest</th>
<th>Grassland</th>
<th>Fallow</th>
<th>Total no. of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapewa</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Mwazye</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Chipapa</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Singiwe</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Sintali</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Chala</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Total | 21 | 14 | 30 | 1 | 66
% | 31.8 | 21.2 | 45.5 | 1.5 | 100

TABLE 2

<table>
<thead>
<tr>
<th>Village</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 or more</th>
<th>Total no. of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapewa</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Mwazye</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Chipapa</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Singiwe</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Sintali</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Chala</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Total | 11 | 20 | 20 | 5 | 4 | 2 | 0 | 1 | 3 | 66
% | 16.5 | 30.5 | 30.5 | 7.5 | 6.0 | 3.0 | 0 | 1.5 | 4.5
Clearing and cultivation of fields
In forest and bushy lands the trees are cut and burnt during the dry season. Long stumps and big trees are left upright. In grasslands, no clearing is necessary. After clearing the field, the soil is prepared using a plough or hoe. In grasslands, moulding is widely practised at the end of the rainy season. In both situations, soil preparation and tilling start soon after the soil becomes soft after the first rains are received.

Planting time
Planting time depends upon the rains and the time taken to prepare the seed bed. Normally the rains start by the end of November and finger millet is planted from December to February with highest frequency of plantings made in January.

Planting method
All farmers broadcast finger millet. Ridges and rows are not made and different methods followed for covering the seed are as follows:
- By hoeing: 19.7%
- Trampling by cattle: 66.7%
- Sweeping with twigs: 1.5%
- Twings pulled by oxen: 12.1%

Seed rate
Most farmers use a very high seed rate, ranging from 10 to 30 kg/ha for finger millet.

Weeding
Weed control is one of the most difficult problems in finger millet production. All farmers in Tanzania weed finger millet only once. Weeding is done either by hand or by using a big hoe.

Intercropping with finger millet
Intercropping is very common in finger millet production. The frequency of farmers mixing millet with other crops are presented in Table 3. In most cases finger millet is mixed with maize, but quite often only a few plants of maize are seen almost making finger millet a pure crop.

POST PRODUCTION PRACTICES

Harvesting and threshing
Ears are usually harvested using a small knife. In spite of the highly developed skill in using the knife, harvesting is too laborious and is one of the discouraging factors in finger millet production in Tanzania.
TABLE 3
Frequency of intercropping with finger millet in Ufipa Plateau

<table>
<thead>
<tr>
<th>Village</th>
<th>Intercropping with finger millet</th>
<th>Pure stand of finger millet</th>
<th>Total no. of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapewa</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Mwazye</td>
<td>9</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Chipapa</td>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Singwe</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Sintali</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Chala</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>19</td>
<td>66</td>
</tr>
<tr>
<td>%</td>
<td>71.2</td>
<td>28.8</td>
<td>100</td>
</tr>
</tbody>
</table>

In the old Rungwe district (except Bulambya Division) finger millet is cut by sickles and piled on flat ground to ferment and later on washed in water by rubbing the loosened heads. This method is good, but a lot of grain is lost in the process.

Yield

While determining the yield of finger millet one has to take into account the intercrop also. However, grain yield of 0.5 t/ha to 2.0 t/ha is quite common in the southern highlands of Tanzania in different cultivators holdings.

Storing

Compared to other cereals, finger millet is easy to store. Most of the farmers store the threshed grain and a few store it in unthreshed sheaves. Threshed grains are kept in 'Vihenge' (like a large basket) with the walls made firm by plastering with soil.

Food uses

In the Ufipa plateau, finger millet has remained the most important food crop. In other regions its use is confined to making local beer (Pombe). As food finger millet is used for making ugali and uji (hard and soft porridge).

REFERENCE

VI

FOOD AND FODDER USES
UTILIZATION OF SMALL MILLETS IN ANDHRA PRADESH (INDIA)

P. Pushpamma

INTRODUCTION

Small millets, which are produced mainly by subsistence farmers as rainfed crops, continue to play an important role in the diets of people living in interior rural and tribal areas in the semi-arid tropics. In these areas, small millets are usually grown where agroclimatic conditions are too severe for other crops. Since most of the consumers of these crops are producers in rural areas, small millets rarely occupy a place in urban food markets. As a consequence, information regarding their food value is scarce.

In 1983, a study was conducted by the Home Science Department of Agricultural University, Andhra Pradesh, India. The objective of this study was to gain a better understanding of the post harvest problems and utilization of sorghum and millets. Information was collected from 2160 households, covering six districts in rural Andhra Pradesh. The main focus of the study was sorghum and pearl millet, but three small millets were also included viz. foxtail millet (*Setaria italica*), Proso millet (*Panicum miliaceum*), and kodo millet (*Paspalum scrobiculatum*).

PRODUCTION AND CONSUMPTION

In the region of study, 27 per cent of households were producing foxtail millet, 13 per cent were producing proso millet and 5 per cent kodo. Most of them were subsistence farmers and the grain was used mainly for home consumption. Only 1-2 per cent of them sold the grain. Farmers who did sell grain, sold it either in their own village or in a nearby village. Among the three millets, foxtail millet was purchased by 11 per cent of families surveyed for consump-
tion. The other small millets were not purchased by the households in the survey.

STORAGE

Millets are usually stored in gunny bags or in a storage structure made with bamboo and plastered with mud and cow dung. Insect damage during storage is minimal compared with heavy insect damage in sorghum and pearl millet (Table 1). This might be one of the reasons why households store small millets in larger quantities (Table 2). The hard pericarp and small seed size could be contributing factors to the greater resistance to insect damage found in small millets.

TABLE 1
Insect damage in sorghum and millets in households surveyed

<table>
<thead>
<tr>
<th>Foods</th>
<th>Percentage with damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>93</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>90</td>
</tr>
<tr>
<td>Finger millet</td>
<td>5</td>
</tr>
<tr>
<td>Proso millet</td>
<td>2</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>3</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>6</td>
</tr>
</tbody>
</table>

TABLE 2
Association between farm size and quantity of sorghum and millets stored (Average per farmer in quintals)

<table>
<thead>
<tr>
<th>Foods</th>
<th>Small farmer</th>
<th>Medium farmer</th>
<th>Large farmer</th>
<th>Over all average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>3.6</td>
<td>6.5</td>
<td>11.4</td>
<td>6.4</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>4.9</td>
<td>5.4</td>
<td>6.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Finger millet</td>
<td>6.7</td>
<td>8.0</td>
<td>12.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Proso millet</td>
<td>6.7</td>
<td>9.3</td>
<td>20.7</td>
<td>9.5</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>5.4</td>
<td>6.6</td>
<td>15.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>11.6</td>
<td>5.5</td>
<td>4.7</td>
<td>6.0</td>
</tr>
</tbody>
</table>

PROCESSING

Unlike sorghum and pearl millet, which are consumed both as whole or dehulled grain products, small millets must be dehulled before cooking. The dehulling of proso millet is often done in the rice mill. The dehulled grain can be stored for more than a month. Kodo is processed mostly by the traditional
method of dehulling, using a stone mortar and wooden pestle (Table 3). Foxtail millet is often dehulled by the traditional abrasive method using a big boulder-like stone which is rolled from one side to the other by two women. The traditional method of processing the small millets surveyed takes 20 to 22 minutes per kg of grain. This method is very tiring as this work demands high energy. The extraction rate of kodo millet is very low being only 54 per cent compared to other small millets, which were found to have extraction rates ranging from 70 to 80 per cent (Table 4).

TABLE 3
Methods of dehulling proso, foxtail and kodo millets used by households surveyed (Percentages in brackets)

<table>
<thead>
<tr>
<th>Foods</th>
<th>By milling</th>
<th>Dry abrasive method</th>
<th>Wet abrasive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proso millet</td>
<td>103 (45)</td>
<td>118 (51)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>95 (19)</td>
<td>413 (81)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>5 (10)</td>
<td>41 (79)</td>
<td>6 (11)</td>
</tr>
</tbody>
</table>

TABLE 4
Time taken for dehulling sorghum and millets and extraction rate

<table>
<thead>
<tr>
<th>Foods</th>
<th>Time taken for dehulling</th>
<th>Extraction rate (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Sec.</td>
</tr>
<tr>
<td>Sorghum</td>
<td>5</td>
<td>07</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>22</td>
<td>10</td>
</tr>
</tbody>
</table>

UTILIZATION
All these millets are usually cooked as rice after dehulling. In addition foxtail millet is consumed as stiff porridge called sargati, or as an leavened bread known as roti, after the dehulled grain has been milled into flour. Proso millet flour is also used as a substitute for rice flour in various snack foods.
NUTRITIVE VALUE

The protein contents of the small millets are reported to range between 10 and 13 per cent, which is comparable to any cereal or millet. In terms of protein quality, as indicated by lysine content, (Table 5) proso millet is better than the other two millets. The level of lysine in proso millet is comparable to that in rice or wheat. However the quality of protein of foxtail millet is lower as its lysine content is less than 3 per cent, comparable to lysine levels in sorghum protein.

<table>
<thead>
<tr>
<th>Foods</th>
<th>Protein g/100 g</th>
<th>Fat g/100 g</th>
<th>Lysine g/100 g Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proso millet</td>
<td>11-12</td>
<td>1.8-2.7</td>
<td>4.35-4.45</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>10-12</td>
<td>4.5</td>
<td>2.29-2.7</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>11-13</td>
<td>3.5-4.9</td>
<td>3.2 -3.7</td>
</tr>
</tbody>
</table>

No information is available on the biological value to assess the human food value of these millets compared to other cereals and millets. However, from the chemical composition, they appear to be not inferior to other more popular food grains.
INTRODUCTION

Small millets such as finger millet or ragi (*Eleusine coracana*), proso millet or panivaragu (*Panicum miliaceum*), foxtail millet or navane (*Setaria italica*), kodo millet or varagu (*Paspalum scrobiculatum*), barnyard millet or banti (*Echinochloa colona*), little millet or same (*Panicum miliare*) form staple foods for a large segment of the population in India. Rajakeera (*Amaranthus paniculatus*) and Job's tears (*Coix lacryma-jobi*) grown in India are also classified as small millets. Besides India, small millets are grown in Russia, China, Japan, USA and a few other tropical African and East Asian countries. Teff (*Eragrostis tef*) and Fonio (*Digitaria exilis*) are the small millets cultivated in Ethiopia and West African countries respectively. Almost all the grain produced is used for food in India and in other developing countries, whereas in the USA and other developed countries grain of small millets are mostly used as feed to calves and birds. The potential of production of these millets in India is high as, they are superior to other cereals in their performance under moisture stress and low soil fertility, and have good capacity to respond to improved inputs. They are relatively short duration crops also. However, more efforts are needed to improve and optimise methods for utilizing small millets in diversified ways.

By virtue of their composition, small millets are quite comparable to rice or wheat in their nutritive value (Table 1). Some of them are even better in protein, oil and mineral content than rice. The protein content of finger, kodo, little and barnyard millets varies from 6 to 10 per cent whereas those of proso and foxtail millets ranges from 9 to 14 per cent. Proso and foxtail millets contain about 4 per cent fat. Finger millet contains the highest level of calcium among cereals whereas teff contains a high level of iron. As regards to the
<table>
<thead>
<tr>
<th>Name</th>
<th>Protein (g)</th>
<th>Fat (g)</th>
<th>Fibre (g)</th>
<th>Minerals (g)</th>
<th>Carbohydrates (g)</th>
<th>Calcium (g)</th>
<th>Phosphorus (g)</th>
<th>Thiamin (g)</th>
<th>Edible matter (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger millet</td>
<td>7.3</td>
<td>1.3</td>
<td>2.7</td>
<td>3.6</td>
<td>27.0</td>
<td>72.0</td>
<td>344</td>
<td>283</td>
<td>100</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>12.5</td>
<td>3.1</td>
<td>4.3</td>
<td>4.7</td>
<td>7.2</td>
<td>70.4</td>
<td>31</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Little millet</td>
<td>8.3</td>
<td>2.5</td>
<td>4.4</td>
<td>5.1</td>
<td>7.6</td>
<td>80.9</td>
<td>31</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>12.3</td>
<td>4.3</td>
<td>4.7</td>
<td>5.3</td>
<td>7.6</td>
<td>80.9</td>
<td>31</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Barnyard millet</td>
<td>6.2</td>
<td>2.2</td>
<td>4.4</td>
<td>5.1</td>
<td>7.6</td>
<td>80.9</td>
<td>31</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Digitaria exilis</td>
<td>8.3</td>
<td>3.5</td>
<td>4.4</td>
<td>5.1</td>
<td>7.6</td>
<td>80.9</td>
<td>31</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Jobs tears (milled)</td>
<td>1.75</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Rajkeera seeds (milled)</td>
<td>15.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Rice (milled)</td>
<td>11.8</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>11.8</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

essential amino acids of the millet proteins, they are however, deficient in lysine, tryptophan and threonine (Table 2). Finger millet protein is unique among cereals to possess very high levels of sulphur amino acids. Generally the leucine to isoleucine ratio of millet protein is not favourable and, in the case of foxtail millet, the higher level of arginine is reported to affect the lysine availability. Diets based on millets as the sole source of protein have been reported to produce poor growth, however, when they are supplemented suitably with lysine rich materials such as legumes, oilseed cakes, animal proteins or synthetic amino acids, their growth promoting value was enhanced significantly. The subject of nutritional quality and processing of millets has been reviewed exhaustively by Rachi and Peters (1977); Hulse et al. (1980) and Hoseney et al. (1982).

Small millets are considered as coarse grains and are used as articles of food in situations where other food grains generally cannot be raised, or purchased at economic prices. Therefore small millets have largely remained as food of the poor and less privileged section of the population. The outer tough seed coat and the characteristic flavour associated with these millets are, the main reasons why they are less popular among rice and wheat eaters. Except for finger millet, all the small millet seeds have a slight resemblance with paddy (rough rice) in their morphological features and have an outer husk, bran and starchy endosperm whereas the finger millet seed coat is tightly bound with soft endosperm. As compared to major cereals like maize, sorghum and pearl millet, the information on processing of small millets for food and industrial uses is very limited (Desikachar, 1975, 1976, 1977). The relevant information available and possible industrial uses of millets are discussed in this paper.

MILLING

Milling is the primary processing of food grains. In the case of rice, the term milling is confined to dehusking and debranning whereas wheat milling includes debranning and sizing the endosperm into semolina or flour. Milling of small millets is done by adoption of both wheat and rice milling techniques.

The finger millet seed coat, contains coloured pigments tightly bound with the soft and friable endosperm. Efforts made to debran finger millet using abrasive type milling machinery have not been successful. Generally, finger millet seeds are powdered, and the whole meal (sometimes a small portion of coarse bran is sieved off) is utilised for food preparations. However, moistening the seed with 3-5 per cent moisture, tempering for about 30 min (moistening toughens the bran and reduces its friability without affecting the endosperm property), grinding followed by sieving separates most of the bran and yields fairly white flour (Kurien and Desikachar, 1962). The roller flour mill, universally used for wheat milling, could be used to obtain fully refined finger millet flour. However, the yield of the flour is hardly 60 per cent (Kurien and Desikachar, 1966). Malleshi and Desikachar (1981b) obtained refined flour

<table>
<thead>
<tr>
<th>Name of millet</th>
<th>Protein content (g/100 g)</th>
<th>Arginine</th>
<th>Histidine</th>
<th>Lysine</th>
<th>Tryptophan</th>
<th>Phenylalanine</th>
<th>Tyrosine</th>
<th>Methionine</th>
<th>Cystine</th>
<th>Threonine</th>
<th>Leucine</th>
<th>Isoleucine</th>
<th>Valine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger millet</td>
<td>7.3</td>
<td>0.30</td>
<td>0.13</td>
<td>0.22</td>
<td>0.10</td>
<td>0.31</td>
<td>0.22</td>
<td>0.21</td>
<td>0.14</td>
<td>0.24</td>
<td>0.69</td>
<td>0.40</td>
<td>0.48</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>12.3</td>
<td>0.22</td>
<td>0.13</td>
<td>0.14</td>
<td>0.06</td>
<td>0.42</td>
<td>—</td>
<td>0.18</td>
<td>0.10</td>
<td>0.19</td>
<td>1.04</td>
<td>0.48</td>
<td>0.43</td>
</tr>
<tr>
<td>Little millet</td>
<td>7.7</td>
<td>0.25</td>
<td>0.12</td>
<td>0.11</td>
<td>0.06</td>
<td>0.33</td>
<td>—</td>
<td>0.18</td>
<td>0.09</td>
<td>0.19</td>
<td>0.76</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>8.3</td>
<td>0.27</td>
<td>0.12</td>
<td>0.15</td>
<td>0.05</td>
<td>0.43</td>
<td>—</td>
<td>0.18</td>
<td>0.11</td>
<td>0.20</td>
<td>0.65</td>
<td>0.36</td>
<td>0.41</td>
</tr>
<tr>
<td>Proso millet</td>
<td>12.5</td>
<td>0.29</td>
<td>0.11</td>
<td>0.19</td>
<td>0.05</td>
<td>0.31</td>
<td>—</td>
<td>0.16</td>
<td>—</td>
<td>0.15</td>
<td>0.76</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Barnyard millet</td>
<td>8.3</td>
<td>—</td>
<td>—</td>
<td>0.18</td>
<td>0.03</td>
<td>0.20</td>
<td>—</td>
<td>0.12</td>
<td>—</td>
<td>0.14</td>
<td>0.04</td>
<td>0.55</td>
<td>0.40</td>
</tr>
<tr>
<td>Job's tears</td>
<td>17.5</td>
<td>0.27</td>
<td>0.13</td>
<td>0.13</td>
<td>0.03</td>
<td>0.30</td>
<td>0.27</td>
<td>0.16</td>
<td>0.11</td>
<td>0.20</td>
<td>1.02</td>
<td>0.30</td>
<td>0.36</td>
</tr>
<tr>
<td>Fonio</td>
<td>8.5</td>
<td>0.24</td>
<td>0.13</td>
<td>0.16</td>
<td>0.09</td>
<td>0.32</td>
<td>0.24</td>
<td>0.35</td>
<td>0.18</td>
<td>0.25</td>
<td>0.61</td>
<td>0.25</td>
<td>0.36</td>
</tr>
<tr>
<td>Teff</td>
<td>9.5</td>
<td>0.22</td>
<td>0.13</td>
<td>0.19</td>
<td>0.08</td>
<td>0.44</td>
<td>—</td>
<td>0.33</td>
<td>—</td>
<td>0.21</td>
<td>0.48</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>Amaranthus seeds</td>
<td>15.0</td>
<td>0.91</td>
<td>0.18</td>
<td>0.51</td>
<td>0.05</td>
<td>0.30</td>
<td>—</td>
<td>0.15</td>
<td>—</td>
<td>0.27</td>
<td>0.51</td>
<td>0.43</td>
<td>0.38</td>
</tr>
<tr>
<td>Wheat</td>
<td>11.8</td>
<td>0.29</td>
<td>0.13</td>
<td>0.17</td>
<td>0.07</td>
<td>0.28</td>
<td>0.18</td>
<td>0.09</td>
<td>0.14</td>
<td>0.18</td>
<td>0.41</td>
<td>0.22</td>
<td>0.28</td>
</tr>
<tr>
<td>Rice</td>
<td>7.0</td>
<td>0.48</td>
<td>0.13</td>
<td>0.23</td>
<td>0.08</td>
<td>0.28</td>
<td>0.29</td>
<td>0.15</td>
<td>0.09</td>
<td>0.23</td>
<td>0.50</td>
<td>0.30</td>
<td>0.38</td>
</tr>
</tbody>
</table>

from malted finger millet using moist conditioning and grinding technique. A mini millet mill has been developed recently by the Central Food Technological Research Institute in Mysore (CFTRI) which consists of a common plate grinder with water mixer and sifter attachments. It is a versatile mill where debranning and sizing the endosperm take place in one operation (Shankara et al., 1985). The mill can be used to obtain semolina and flour from wheat, maize, sorghum and millets (Fig. 1).

In the case of other small millets, milling process includes dehusking and debranning (decortication) and grinding if desired. The traditional method of dehusking and debranning by hand operated pestle or denki still persists. The Rice milling machinery, such as disc sheller, rice huller and centrifugal sheller also dehusk the small millets effectively (CFTRI Ann. Report, 1976). Dehusking can be carried out even in the plate mill by suitably adjusting the clearance between the plates. The dehusked or decorticated grains ('brown rice') are polished in a rice polisher to get 'millet rice' (Fig. 2). Polished grains may be pulverized in a plate mill or hammer mill to obtain semolina, or flour, as required. Alternately the grains could be used for cooking like rice, or can be processed for flaking.

Co-milling of small millets with wheat and other cereals to produce composite flours has also been reported by Crabtree and Dendy (1977), and Lorenz et al. (1980).

It may be worthwhile to mention here that the millet bran contains nearly 15-20 per cent oil. In case milling of these grains is carried in an organised sector, the bran could be used as an extender of rice bran for extraction of oil.

CONVENTIONAL FOOD PRODUCTS

Roti (unleavened pan cake), mudde (dumpling) and porridge are the main food products prepared from millets. Millet protein lacks gluten, hence it is unsuitable as the sole material for preparation of bakery products. For preparing roti, millet flour is mixed with hot water to partially gelatinize the starch. This imparts the necessary binding of particles and helps to roll the dough into thin sheets. The flattened dough is baked on a hot plate. Roti resembles wheat chapathi or maize tortilla. Mudde from millet flour is prepared by steaming the dough and making it into balls. Mudde is similar to 'TO' of Africa. Roti and mudde are eaten with dhal (legume soup) and vegetables. Millet flours suspended in cold water containing a little butter milk is left overnight for mild fermentation. Next morning the slurry is cooked to prepare porridge. Millets can substitute rice completely in the preparation of idli and dosa (steamed and baked preparations) (CFTRI Ann. Report, 1976). Millets and black gram (Vigna mungo) mixed in the ratio of 3:1 are wet ground, and the mixed batter is fermented overnight. The batter is steamed to make idli or baked on hot pan to prepare dosa or wet pancakes.
1. Main hopper
2. Water tank
3. Water mixer
4. Tempering hopper
5. Plate mill
6. Sifter
7. Aspirator

Fig. 1. Mini grain mill
Fig. 2. Milled samples from proso millet

1. Millet grains
2. Dehusked grains
3. Husk (Hulls)
4. Dehusked and debranned millet
5. Bran
Enjera is a popular food item prepared in Ethiopia (Gebrekidan and Hiwot, 1981). Enjera is prepared by wet grinding teff, fermenting the batter and baking on hot pan similar to dosa. Enjera is nutritionally inferior to dosa as the former is prepared out of teff only. It is advisable that cowpea or other protein rich material should be mixed with teff to prepare enjera. This aspect deserves the attention of the concerned in Ethiopia. Millets can substitute wheat up to 20 per cent in bakery flours. Incorporation of higher levels of millet flours affects the texture of the products, without affecting the nutritive value (Awadalla and Slump, 1974).

NON-CONVENTIONAL FOOD PRODUCTS

Debranned small millets, when dropped in boiling water, cook soft within 5-10 min. This beneficial property of millets needs to be exploited for developing quick cooking cereals.

Flakes

Pearled grains are soaked in water, steamed or cooked under pressure to effect complete gelatinisation of the starch, dried to about 18 per cent moisture and pressed to requisite thickness between heavy duty rollers and dried to prepare flakes. Flakes hydrate quickly when added to warm water or milk and are used to prepare sweet or savoury dishes. Flakes, when deep fried, expand and form crispy products. The relatively smaller size and quick hydration of millets, make them most suitable for the production of flakes.

Extruded products

Noodle-like products could be prepared from millet flours. Noodles prepared from blends of millet and legume flours form nutritionally balanced food which could be used as supplementary or weaning foods. The pearled grains soaked in water for 1-2 days, wet ground and the mash cooked, extruded and dried, make excellent crispy product when deep fried. The quality of these products is equal to that prepared from rice. These products could be economically produced as a cottage industry, as the equipment needed are very simple, and the capital investment required is also low (Kumate, 1983).

Parboiling of millets

Parboiling of rice is a well known traditional process of processing of rice. Desikachar (1976) reported that steam treatment of finger millet hardens the endosperm, enables the production of grits, and reduces the sliminess of mudde. Shreshta (1972) reported that parboiling of kodo millet improved its milling quality. It is well known that parboiling of rice improves milling quality and reduces the loss of thiamine during milling. Parboiled rice is also used to prepare expanded rice, which is a precooked ready to eat product. The same may hold good with millets too. Research work in this direction may be highly fruitful.
Popping

Popping or puffing is a simple processing technique of cereals to prepare ready to eat products. Popped grain is a crunchy, porous, precooked product. Popping invariably improves taste and flavour. Among the cereals finger millet develops highly agreeable flavour on popping. The volume of popped millets ranges from 8-10 ml/g (Table 3). Popped grains find extensive usage as snacks. Popped flour blended with puffed chickpea or toasted green gram forms a nutritious food (Desikachar, 1984). Popped finger millet flour is often consumed after mixing with jaggery (brown sugar) and milk is traditionally called hurihittu. Popped finger millet flour is now produced and is marketed at cottage industry level in some places. Popped millets are also used as adjuncts in brewing. Malleshi and Desikachar (1981a) reported that to obtain fully expanded millets, the grain moisture content should be around 19 per cent and popping temperature of about 250°C. They also studied the varietal differences in popping (Malleshi and Desikachar, 1985). It is difficult to debran popped grains. Hence, popped millet meals have slightly higher fibre content.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Expanded Volume (ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>35</td>
</tr>
<tr>
<td>Sorghum</td>
<td>22</td>
</tr>
<tr>
<td>Paddy</td>
<td>18</td>
</tr>
<tr>
<td>Proso millet</td>
<td>12</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>11</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>10</td>
</tr>
<tr>
<td>Finger millet</td>
<td>8</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>7</td>
</tr>
<tr>
<td>Little millet</td>
<td>7</td>
</tr>
<tr>
<td>Barnyard millet</td>
<td>7</td>
</tr>
</tbody>
</table>

Malting

Malting of barley in temperate countries and that of sorghum in African countries is practised on industrial level for brewing. Malting of finger millet has been a traditional process in certain parts of India (Chandrasekhara and Swaminathan, 1953a). Malted finger millet is mostly used for feeding young children and also for use in milk based beverages. Among the tropical cereals, finger millet possess superior malting characteristics (Malleshi and Desikachar, 1986a). Finger millet malt possesses a highly agreeable flavour, with adequate starch hydrolysing enzymes. It is rich in calcium and sulphur amino acids and forms an ideal base for weaning food formulations (Malleshi and Desikachar, 1986a).
Recently, a weaning food of low dietary bulk and high calorie density was developed by the Central Food Technological Research Institute Mysore, using malted finger millet and green gram (*Vigna radiata*) (Malleshi and Desikachar, 1982). The food was nutritionally comparable to proprietary weaning foods (Table 4), and was readily accepted and tolerated by children (Venkat Rao *et al.*, 1985). The pilot scale production of the weaning food was standardized and the process know-how has been provided to a few entrepreneurs. Use of malted finger millet for preparation of malt extract and malt syrups (Chandrasekhar and Swaminathan, 1953b) and in brewing (Venkatnarayana *et al.*, 1979) has also been reported.

Malts from other small millets are also acceptable, however the development of amylases is low in them as compared to finger millet (Table 5). Refined finger millet malt flour blended with milk powder, sugar and a flavouring agent, forms a thickener for milk-based beverages. In addition, malt flour blended with barley malt hydrolysed to dextrin, flavoured with cocoa and vacuum

![Flow sheet for preparation of malted weaning food](image-url)
TABLE 4
Composition of malted weaning food (MWF) as compared with proprietary weaning foods
(per 100 g)

<table>
<thead>
<tr>
<th></th>
<th>MWF</th>
<th>Farex*</th>
<th>Nestum*</th>
<th>Cerelac*</th>
<th>Balamul*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (g)</td>
<td>6.0</td>
<td>3.5</td>
<td>5.0</td>
<td>2.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>11.5</td>
<td>12.0</td>
<td>7.5</td>
<td>11.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>1.5</td>
<td>3.0</td>
<td>-</td>
<td>7.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Crude fibre (g)</td>
<td>1.8</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total ash (g)</td>
<td>2.3</td>
<td>3.5</td>
<td>3.0</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>240</td>
<td>750</td>
<td>690</td>
<td>275</td>
<td>800</td>
</tr>
<tr>
<td>Phosphorus (mg)</td>
<td>210</td>
<td>400</td>
<td>570</td>
<td>225</td>
<td>690</td>
</tr>
<tr>
<td>Calorie</td>
<td>396</td>
<td>350</td>
<td>366</td>
<td>422</td>
<td>380</td>
</tr>
<tr>
<td>PER</td>
<td>2.4</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cooked paste viscosity (15% slurry) cpu</td>
<td>250</td>
<td>9000</td>
<td>12000</td>
<td>3500</td>
<td>900</td>
</tr>
<tr>
<td>Market price (Rs./kg) (estimated)</td>
<td>Rs. 15/-</td>
<td>33.75</td>
<td>28.50</td>
<td>32.25</td>
<td>17.10</td>
</tr>
</tbody>
</table>

*Extract from the display on unit pack tins (1983 batches).

Self-dried, forms a fluffy product, for use in milk-based beverage formulations (CFTRI Ann. Report, 1982). Thus, finger millet malt is an extremely valuable raw material in malt industry. If it is fully exploited, the import of barley malt can be reduced substantially.

STARCH PRODUCTION

Small millets are rarely used to produce starch for industrial uses. However, starches were isolated from millets and their physico-chemical properties were studied (Modi and Kulkarni, 1976; Lorenz and Hinze, 1976; Wankhede et al., 1976; Paramhans and Tharanathan, 1980; Muralikrishna et al., 1986; Malleshi et al., 1986). Millet starches generally exhibited higher gelatinisation temperature, higher water binding capacity and slow in enzymatic hydrolysis than wheat or rice starches.

Millet contains a relatively higher proportion of unavailable carbohydrates (Kamat and Belavady, 1980) and the release of sugars from millet based diets is slow (Gopalan, 1981). These factors could be best utilised in developing special foods for diabetics.

The finger millet seed coat which contains pigments is a byproduct of the finger millet milling industry. The bran could be economically exploited for extraction of food grade colours, as there is a growing demand for natural food colours.
TABLE 5
Comparative malting characteristics of some tropical cereals and millets

<table>
<thead>
<tr>
<th>Malting period</th>
<th>2 days</th>
<th>4 days</th>
<th>Sensory acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amylase activity</td>
<td>Malting loss (g%)</td>
<td>Amylase activity</td>
</tr>
<tr>
<td>Rice</td>
<td>50</td>
<td>3.6</td>
<td>105</td>
</tr>
<tr>
<td>Wheat</td>
<td>120</td>
<td>6.8</td>
<td>230</td>
</tr>
<tr>
<td>Triticale</td>
<td>145</td>
<td>4.5</td>
<td>260</td>
</tr>
<tr>
<td>Maize</td>
<td>50</td>
<td>2.9</td>
<td>150</td>
</tr>
<tr>
<td>Sorghum*</td>
<td>67</td>
<td>4.0</td>
<td>170</td>
</tr>
<tr>
<td>Finger millet</td>
<td>165</td>
<td>5.5</td>
<td>200</td>
</tr>
<tr>
<td>Pearl millet*</td>
<td>170</td>
<td>4.0</td>
<td>154</td>
</tr>
<tr>
<td>Proso millet</td>
<td>100</td>
<td>3.5</td>
<td>145</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>85</td>
<td>5.0</td>
<td>132</td>
</tr>
<tr>
<td>Barnyard millet</td>
<td>48</td>
<td>3.9</td>
<td>70</td>
</tr>
<tr>
<td>Kodo millet</td>
<td>10</td>
<td>3.4</td>
<td>55</td>
</tr>
</tbody>
</table>

*Incidence of mould observed during germination.
Fig. 4. Processing of small millets for food and industry
In conclusion, it may be stated that small millets can be processed to diversify their uses, to improve their nutritive value and consumer acceptability (Fig. 4). Milled or decorticated millets could be used in preparation of flakes, quick cooking cereals, or extruded products. Popping can be an economic and effective method for processing of millets for food and industrial uses. Finger millet has high potential for use in malt industry and it is a suitable base for weaning and supplementary food formulations. Millet may also find use for formulating high fibre and diabetic foods. There seems to be a need for screening millet germplasm for improved nutritional and superior technological characteristics.

REFERENCES

SCOPE FOR USING SMALL MILLETS AS FORAGE IN INDIA

S.R. Sampath

INTRODUCTION

Time and again it has been emphasized that the animal production industry in the country can only be developed to yield results when sufficient feed input is available. In the absence of sufficient feed, there is considerable risk in improving animal production.

The development and spread of dwarf varieties of food crops has played a significant role in increasing the grain production of the country in recent years. But, this has reduced the bulk and fibrous portions which otherwise would have been available for meeting the needs of large animals.

In the absence of sufficient land for pasture or forage production, the only alternative, is to augment the feed resources by developing small millets as crops for livestock feeding. There is also a need for obtaining this feed in increased quantities and with higher nutrient content. An attempt has been made in this paper to examine the utility of small millets forage and crop residues as feed for small and large animals.

Finger millet forage

Locally known as ragi (Eleusine coracana Gaertn.), finger millet is considered to be a cultigen of the wild species E. indica, a species which is native to India and Africa and now seen throughout the warm regions of the world. It is an important crop in India and east Africa, and is the staple food of a large section of population. The grain is also used for malting and brewing.

Finger millet is grown extensively in India in dry regions as a rainfed crop. Finger millet grain contains 7-8 per cent protein, about 73 per cent carbohydrates, 0.33 per cent calcium and 0.27 per cent phosphorus. This is con-
considered to be poor man’s staple food and is consumed by people more in the rural parts, particularly by the working community than by the elite. Finger millet is also used in feeding infant calves and growing animals. The sick and convalescing animals are given a gruel made out of finger millet flour.

In some parts, finger millet is grown exclusively for forage and gives 13-15 tonnes of green forage per acre in three cuttings. The chemical composition of finger millet silage and straw is given in Table 1.

Irrigated crops of finger millet yield 6 to 10 tonnes of dry straw per hectare while rainfed crops yield 2-3 tonnes per hectare. The straw obtained from the rainfed crop is relished more by cattle compared to straw obtained from the irrigated crop. Straw of irrigated crop is tough and fibrous and hence is less palatable. Under irrigation with proper management, 12-14 tonnes of green fodder per hectare can be obtained in about 50 to 60 days.

Evaluation of 50 genotypes from different states in India has revealed the superiority of the varieties from Uttar Pradesh, Madhya Pradesh and Karnataka for fodder yield, internodal length, leaf length and plant height. The varieties from Tamil Nadu, Bihar, Orissa and Andhra Pradesh showed high tillering.

Studies in Japan have shown that the fodder yield, crude protein content, cell wall constituents, non-structured carbohydrates and dry matter digestibility of finger millet is higher compared to that of Rhodes grass and Italian rye grass. Several studies in India have shown that application of inorganic nitrogen, along with mycorrhizal fungus and phosphorus solubilising bacterium increased the mineral contents in the finger millet straw.

Finger millet straw is used in many parts of the country for feeding all categories of animals, such as working animals, milch animals and dry animals. This serves as an important source of dry fodder which is a must in the daily ration at least in small quantities. It is said that for all kinds of cattle, ragi straw is superior to that of rice.

Little millet forage

Little millet (*Panicum miliare* Lank.) locally known as *same* is grown on poor soils and the grain is a famine reserve. The straw is thin stemmed and liked by cattle. The average yield of straw is only 8 to 12 q/ha. It is also poor in quality although cattle eat it readily on account of its thin and leafy nature. It is grown in India on 666,000 hectares as a dryland crop on both black and red soils in the *kharif* season in areas where the annual rainfall is less than 750 mm. The production of little millet in the country is about 79,000 tonnes, with Karnataka state producing about one-eighth of this. The straw is a byproduct after removal of the grain. It is estimated that about 16,700 tonnes of little millet straw is available in Karnataka state annually for feeding the cattle. The nutrient utilization of straw was evaluated at NDRI, Bangalore. Six adult dry non-producing and non-pregnant crossbred cows of comparable body
<table>
<thead>
<tr>
<th>Stage/type of forage</th>
<th>Composition</th>
<th>Digestibility</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude protein</td>
<td>Ether extract</td>
<td>Crude protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh late vegetative</td>
<td>7.6</td>
<td>1.1</td>
<td>33.6</td>
</tr>
<tr>
<td>Fresh dough stage</td>
<td>7.1</td>
<td>1.7</td>
<td>28.8</td>
</tr>
<tr>
<td>Silage</td>
<td>3.6</td>
<td>1.5</td>
<td>38.8</td>
</tr>
<tr>
<td>Straw</td>
<td>3.4</td>
<td>1.3</td>
<td>37.2</td>
</tr>
<tr>
<td>Fresh early vegetative</td>
<td>11.4</td>
<td>1.4</td>
<td>28.8</td>
</tr>
<tr>
<td>Fresh dough stage</td>
<td>5.7</td>
<td>1.5</td>
<td>31.6</td>
</tr>
<tr>
<td>Straw</td>
<td>3.5</td>
<td>1.5</td>
<td>34.3</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>9.7</td>
<td>2.7</td>
<td>31.4</td>
</tr>
<tr>
<td>Hay</td>
<td>8.2</td>
<td>2.7</td>
<td>25.3</td>
</tr>
<tr>
<td>Setaria intermedia (Hay)</td>
<td>8.6</td>
<td>1.0</td>
<td>37.1</td>
</tr>
<tr>
<td>Proso millet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>8.1</td>
<td>2.4</td>
<td>29.9</td>
</tr>
<tr>
<td>Hay</td>
<td>12.5</td>
<td>2.5</td>
<td>33.9</td>
</tr>
<tr>
<td>Straw</td>
<td>4.8</td>
<td>1.2</td>
<td>35.5</td>
</tr>
</tbody>
</table>
weights were fed with straw of little millet for a period of 30 days and during the last 7 days, a metabolism trial was carried out. The straw contained 4.13 per cent crude protein, 37.86 per cent crude fibre, 0.41 per cent calcium and 0.06 per cent phosphorus on dry weight basis. The dry matter intake by the animals ranged from 1.08 kg to 2.04 kg with an average of 1.52 kg/100 kg body weight during the preliminary feeding period. During metabolism period, the intake was 1.61 kg. The balance of nitrogen was marginally negative. The nutritive value in terms of digestible crude protein (DCP), starch equivalent (SE) and total digestible nutrients (TDN) of the material worked out to 0.55, 27.92 and 47.07 kg respectively for 100 kg dry matter. The straw is a good source of roughage for cattle (Shivaramaiah and Sampath, 1981).

Kodo millet forage

Kodo millet or scrobic millet (*Paspalum scrobiculatum*) is known locally as “Varagu” or “Haraka”. This millet is of considerable importance in the Deccan region. It is an annual, drought resistant crop well suited to drier conditions and gravelly soils. The straw yield is low, one to two tonnes per hectare with 2.3 per cent protein. The grain is used as standby food in famine years.

The wild form is smaller and the grain sometimes reported to be poisonous. The nutrient content in different stages of crop growth is shown in Table 1.

Foxtail millet forage

Italian millet or foxtail millet (*Setaria italica*) locally called as ‘Navane’ is reported to have been cultivated in China as early as 2700 B.C. and introduced later to Europe. In India, it is raised on poorer soils in drier regions. The crop is hardy and less prone to diseases or pests.

The crop can be cut at 45 days after sowing for converting into hay for feeding cattle and buffaloes. About 70 to 90 quintals of hay per hectare may be obtained from an irrigated forage crop cut at the flowering stage. It is not reported to be suitable for introducing in pasture. The chemical composition of foxtail millet straw is shown in Table 1.

Straw of foxtail millet is thin stemmed and liked by cattle in south India. But, it is considered injurious to horses if they are fed exclusively on this.

Proso millet forage

This millet, locally known as ‘Baragu’, is a catch crop grown for grain in many parts of tropics and subtropics. It is a millet of the old world and since pre-historic times has been an important grain crop for human food.

The grain serves as poor man’s standby and famine reserve food. The grain yield ranges from 2.8 to 5.6 q/ha under rainfed conditions and the straw yield is about a tonne per hectare. Under irrigation the yield is doubled.

Proso millet gives satisfactory results when used as a substitute feed for other grains. It should be ground before use except in poultry feeding. The
ground proso millet is reported to be worth from 75 to 90 per cent as much as corn for fattening cattle, lambs and fully 90 per cent as much for laying hens. The chemical composition of proso millet fodder is given in Table 1.

In retrospect

The country's economy depends on agricultural production and animal production is a complementary enterprise which when dovetailed to the former in an integrated way, can bring in considerable relief to the rural poor. Animal production programme requires quality inputs in terms of feed in order to be viable. In this context, the millet crops which are now confined to small areas could be developed to supply the forage needs for sustaining animal production industry, economically.

The nutritive value of the forage depends upon its chemical composition, digestibility and the nature of digested products. In addition, the amount of forage consumed by the animal is important as it affects the total nutrient intake and the animal's response to such factors as acceptability, rate of passage and presence of undesirable substances that may be contained in forage is to be reckoned with.

From the work carried out on various millet crops and varieties developed, there is considerable scope for utilizing the millet crop as forage by harvesting it at the appropriate time and feeding the same to the animals. It is also possible to take 2 to 3 cuttings of the millet crop so as to obtain an increased tonnage and thus render it economical. For instance, a forage yield in finger millet crop was estimated to be 13.4 tonnes per acre in 3 cuttings.

By using improved technologies and high yielding varieties small millet forage of acceptable quality and nutrients can be produced. The response to application of small quantities of fertilizer and harvesting at appropriate stage for maximum nutrient utilization needs to be studied. The institutions are to carry out intensive research in this direction.

REFERENCES

Both foxtail and proso millets are native to China and have been cultivated for thousands of years. Millet products are popular and used in many ways. The main purpose of their cultivation is for food, but the straw is also used as feed.

The foxtail millet grain is husked for human consumption and most cultivars are non-glutinous. Millet gruel has a pleasant flavour and is not considered as a coarse diet. They have been used by royal families of old China, such as Qinzhouhany, Jinmi, Lonshanmi and Taohuami. Millet flour combined with legumes or by itself is used for making cakes. Glutinous millet is mainly used for making cakes and it can replace glutinous rice. Proso millet can also be used in place of glutinous rice.

Husked millet is used in the food industry also. Beer made from millet has a special flavour. It is also an ingredient for making vinegar. The grain is used in Chinese medicine and in the preparation of medicinal food. Its effect may partially be explained by its chemical composition.

Most foxtail millets are of high nutrient quality. Their protein content ranges from 10 to 15 per cent and they are rich in unsaturated fatty acids. Among the 2684 varieties analysed, 13 varieties had protein content higher than 15 per cent. For example the variety Hebai Haigu has protein content of 17 per cent, Hebai Maogu has 16 per cent protein in which lysine content is 0.27 and 0.26 per cent respectively. The lysine contents of 0.3 per cent are also found in some varieties. The oil and fat content of most accessions are 3-4 per cent while some have more than 5 per cent. The results of analysis for 6 kinds of fatty acids in 260 varieties showed that 171 varieties have more than 75 per cent linoleic acid content. The linoleic acid content in non-glutinous varieties is little lower than that of glutinous varieties (Table 1).
TABLE 1
Nutritional quality analysis of foxtail millet

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Number of accessions analysed (land races)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>2684</td>
<td>Higher than 15% (13 lines)</td>
</tr>
<tr>
<td>Lysine</td>
<td>2684</td>
<td>Higher than 0.3% (some)</td>
</tr>
<tr>
<td>Lipids</td>
<td>2684</td>
<td>Higher than 5% (some)</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>260</td>
<td>Higher than 75% (171 lines)</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>100</td>
<td>Average 74 I.U.* highest 200-394 I.U.</td>
</tr>
<tr>
<td>Vitamin B₁</td>
<td>100</td>
<td>Average 0.63 mg/100 g, highest 1.03 mg/100 g</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>100</td>
<td>Glutinous 13.2 µg/100 g, non-glutinous 10.4 µg/100 g</td>
</tr>
</tbody>
</table>

*I.U. = International Unit

Vitamin contents of 100 varieties are tabularized in the book "Manual of Cultivars of Chinese Foxtail Millet". Table 1 shows that the average content of vitamin A is 74 Iu. While the average content of vitamin B-1 is 0.63 mg per 100 grams, the highest is 1.03 mg per 100 grams. The average content of vitamin E is 10.4 µg/100 gram in non-glutinous varieties and 13.2 µg/100 gram in glutinous varieties. Selenium contained in foxtail millet was found valuable for improvement of human heart blood vessel diseases.

The grain is very suitable for storage. The hard glumes and high content of silicon in grains protect them from moisture and insect damage.

In addition, the grain is a good concentrated feed. According to farmers' experience, hens fed with millet grain lay more eggs. It is also a favourite feed for the cage birds.

Millet is mainly grown for self-consumption by local farmers and very little of the produce enters trade channels. Nevertheless, in the market, the price of millet is equal to rice.

During 1930's, the export of millet grains was considerable but it is negligible today. It is because the millet grain is recognized only as feed by the importing countries, whereas in our opinion, it is a good food grain.

Apart from the grain, the straw is also very important for the grower. Millet straw is soft and stores well. It is an indispensable forage for livestock in northern China. In the growing region of foxtail millet, livestock like horses and oxen are used as draft animals. Generally one horse consumes a hectare of millet straw annually. By value the straw makes up 1/4 to 1/2 of the millet income. In special cases, when in shortage, the price of straw by weight equals that of the grain.
TABLE 2
Composition of straws of certain crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Water (％)</th>
<th>Protein (％)</th>
<th>Fat (％)</th>
<th>Fibre (％)</th>
<th>N-free extract (％)</th>
<th>Ash (％)</th>
<th>Calcium (％)</th>
<th>Phosphorus (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxtail millet</td>
<td>10.8</td>
<td>3.16</td>
<td>1.35</td>
<td>3.15</td>
<td>44.30</td>
<td>9.02</td>
<td>0.32</td>
<td>0.14</td>
</tr>
<tr>
<td>Wheat</td>
<td>8.6</td>
<td>2.48</td>
<td>1.64</td>
<td>35.16</td>
<td>43.07</td>
<td>8.50</td>
<td>0.21</td>
<td>0.36</td>
</tr>
<tr>
<td>Rice</td>
<td>12.6</td>
<td>3.07</td>
<td>1.65</td>
<td>22.90</td>
<td>44.20</td>
<td>15.60</td>
<td>0.18</td>
<td>0.09</td>
</tr>
<tr>
<td>Beans</td>
<td>11.5</td>
<td>9.36</td>
<td>1.72</td>
<td>3.19</td>
<td>38.50</td>
<td>5.75</td>
<td>0.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>
According to the information of Institute of Animal Science, Chinese Academy of Agricultural Sciences, the nutrition of millet straw is superior to that of other major crops, such as wheat and rice, but inferior to the stalk of beans (Table 2).

We notice in literature, that the foxtail millet hay fed to horses may cause injurious effects. This injury is caused by a glucoside called setarin. But such an injury has not been detected in our country.
Finger millet has a high nutritive value, being especially high in carbohydrates. Although it is less rich in protein than other cereals, its biological value is high. According to Purseglove (1975), the prolamine (or storage protein) of finger millet, called eleusinin, has high biological value, with a good content of cystine, tyrosine, tryptophane and methionine, which are important in the prevention of kwashiorkor disease, but eleusinin is low in lysine. The grain is a rich source of calcium, containing 0.33 per cent compared with 0.01-0.06 per cent in many other cereals. It is also rich in phosphorus and iron.

Bredon (1962) found wide variations in the chemical composition of the two major types of finger millet in Uganda—white and brown (Table 1). The carbohydrate component is high and the protein content varies from 6 to 11.3 per cent.

<table>
<thead>
<tr>
<th>Type of finger millet</th>
<th>Protein (%)</th>
<th>Fat</th>
<th>Carbohydrate (%)</th>
<th>Fibre</th>
<th>Ash (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White grained</td>
<td>7.2-11.3</td>
<td>4.1-7.7</td>
<td>61.0-72.7</td>
<td>0.7-7.8</td>
<td>2.0-5.0</td>
</tr>
<tr>
<td>Brown-black grained</td>
<td>6.6-9.2</td>
<td>1.1-1.5</td>
<td>69.6-76.1</td>
<td>2.4-5.0</td>
<td>2.4-4.7</td>
</tr>
</tbody>
</table>

Finger millet in Uganda is mainly utilized as food, in making local beer and, to a limited extent, fed to livestock both forage and grain and its by-products.
Utilization as food

As food, finger millet is consumed in the form of stiff porridge (Ugali) and thin porridge. White coloured grains are more preferred for food than the dark coloured ones. After harvesting the millet heads are kept in a heap for 3-5 days to further ripen the grain and to give it a desirable taste. The millet is dried under the sun and stored. It is taken out in required quantities as and when needed.

The grain is separated by beating with sticks or, if required in small quantities, dehusking is done with a wooden mortar and pestle; then winnowed. Almost invariably, the millet is mixed with dried cassava or sweet potato chips or with sorghum and ground. In some places in the north and in Karamoja finger millet is eaten sole. The ratio of cassava/sweet potato to finger millet is about 5 to 1. Grinding is done by hammer mill, but most commonly in rural areas, the millet is ground between two stones. The flour is mixed with boiling water until it becomes stiff and this is the ugali. The ugali is eaten along with a vegetable such as cowpeas, groundnuts, sesame, meat, chicken, etc. This is the food habit in eastern and western Uganda. The porridge is also made with boiling water usually with sole millet and it is not mixed with cassava/sweet potatoes. In the east and north, millet porridge is a minor meal, being mainly served to lactating or pregnant women and to children. In the south and west, porridge is an important meal served to guests and visitors.

Utilization for beer

Millet for beer is not mixed with cassava or sweet potatoes. It is normally utilized sole. However, further north and in Karamoja, it is mixed with sorghum but millet forms the major component in the mixtures. The dark coloured grains are preferred for beer since they tend to make stronger beer. The millet is ground into a rough (not as fine as for food) flour which is mixed with cold water and left underground or in old tins or saucepans for 7-10 days. It is then roasted on a large pan with plenty of fire. The roasted millet malt can be eaten straight away especially by children. It is either mixed with sugar or with fresh milk and eaten. It is a delicious meal. The roasted malt is dried under the sun. The beer is made by adding yeast to the malt. Yeast is made by germinating millet grains. The grains take 3-5 days to sufficiently germinate depending on the variety. After germination, the seed (yeast) is dried and ground.

The dried roasted malt is mixed with the yeast at the ratio of 5 to 1 in cold water. The next day, the mixture is sweet and non-alcoholic. At this stage it can be eaten especially by children or drunk in hot water. This sweet mixture is often served to non-alcoholics. If more yeast is added, the mixture becomes alcoholic the following day. The beer is drunk with hot water using straw. This is an important drink in all the rural areas of the country and is also becoming important in urban areas. It is the major drink for family at home
also. It is also served to visitors and on all ceremonial functions including marriages and funerals. Depending on the variety, the beer can be kept up to five days before becoming sour. It is discarded if it goes sour. The residue is normally thrown out but also fed to chickens and pigs. In famine years, this residue is dried and mixed with cassava or sweet potatoes and made into food. Finger millet beer is sold in both rural and urban areas and is a source of income.

Utilization as forage

Finger millet in Uganda is not generally produced as a livestock feed. In the rural areas, the utilization is almost 100 per cent as a human food. Chickens may also be fed with grain. After harvesting, cattle, goats and sheep are grazed on the straw in the field. Very long strawed types are cut in western Uganda for thatching of roof of granaries.

REFERENCES

VII

DISCUSSIONS AND RECOMMENDATIONS
REPORT OF GENETIC RESOURCES DISCUSSION GROUP

Chairman: G. Harinarayana
Discussant: G. Harinarayana

1. The need for updating the lists of available small millets germplasm accessions has been recognised.
2. The participating scientists felt the need for free exchange of small millets genetic resources.
3. Each of the participating countries is requested to identify the gaps in collecting small millets in their agroclimatic regions and/or provinces and arrange for collecting missions. It is desirable to associate breeders in collecting expeditions.
4. Besides collecting from farmers' fields and markets, it is desirable to collect land races of cultivated small millets species in wild, as well as wild relatives of cultivated species.
5. Recognising the significance of environmental diversity, it is proposed to evaluate the germplasm in multilocalional, National/International nurseries.
6. To obtain uniformity in evaluation, the participating countries are requested to use descriptors for various small millets as published by IBPGR, Rome.
7. Biochemical and processing characterization of small millets germplasm appears worthwhile. Identifying sources of useful genes from the already available and conserved germplasm should receive top priority since utilization of germplasm is very limited in small millet crops.
8. As the descriptor lists are likely to be voluminous and may have limited circulation, the utilization of the germplasm could be accelerated by circulating pocket size editions of descriptor lists with limited characters like plant height, maturity, pest and disease resistance, grain yield, etc.

REPORT OF BREEDING AND VARIETAL IMPROVEMENT DISCUSSION GROUP

Chairman: H. Doggett
Discussant: A. Seetharam

1. The small floret size in all small millets has limited the artificial hybridization and recombination breeding. The contact method and hot water emasculation method used to some extent have their own limitations. So, there is need to overcome this problem by possibly studying induced male sterility using gametocides and there is need to standardize these methods.
Genetic male sterile systems and mechanisms like protogyny may also be investigated and confirmed. We may also look for outcrossing systems wherever available.

2. All small millets are inbreeders. There is not much work done on the application of various breeding procedures and assessing their relative efficacy.

3. Mutation breeding could be one of the methods thought of in small millets since artificial hybridization is difficult. The possible application of this breeding procedure in different areas of varietal improvement needs to be fully exploited.

4. Single plant selections from germplasm accessions could be one of the simplest and effective means of obtaining superior genotypes.

5. The application of biotechnology particularly anther culture and ovule culture techniques and exploitation of somaclonal variability in callus cultures could be thought of as a method for evolving varieties rapidly.

6. Quality breeding in small millets is also important although it is a very difficult area to make any headway in short period of time. Seed protein, mineral content and malting quality are some of the areas for consideration. Screening of available germplasm for consumer, nutritional and processing quality characters may be the first step in this direction.

7. There is a need to understand more about the genetic control of various yield and yield contributing characters.

8. Identification of varieties with wide adaptation, high yield stability, and differing photoperiod sensitivity is important particularly in finger millet, foxtail millet and proso millet as these crops are grown in varying rainfall areas, temperature regimes and day lengths. Besides, evolution of varieties for different cropping systems, both relay and mixed cropping should also be attempted.

9. As all small millets are essentially rainfed crops confining themselves to semi-arid tropics, breeding of drought tolerant varieties is important. The initial step in this direction will be screening of all available germplasm and identifying the useful lines.

10. All small millets are low input crops and grown by poor and marginal farmers. Under such situations use of pesticides for the control of pests, diseases and weeds is neither feasible nor practicable. Inbuilt resistance is the best way of tackling this situation and this should receive high priority. Some of the important diseases and pests that could be considered for resistance breeding are blast in finger millet, shootfly in proso millet and little millet, smut in kodo millet, foxtail millet and proso millet.

11. Following identification of new practices like seeds, fertilizers, weedicides, fungicides, pesticides, etc. testing on farmers' fields for obtaining their acceptance, laying of large scale demonstrations for exhibiting the production as well as economic potential and scientists involvement in lab-to-land programmes for mutual information transfer require attention.
12. The concern for supplying certified seed of high quality small millets including seed treatment with pesticides and fungicides has been expressed. The mechanisms of seed production and distribution were discussed. Seed village concept and distribution of seeds through exchanging ‘new’ for ‘old’ varieties to farmers can be explored.

REPORT OF PRODUCTION TECHNOLOGY AND CROPPING SYSTEMS DISCUSSION GROUP

Chairman: K. Krishnamurthy
Discussant: H. Doggett

1) Intercropping
There are benefits from intercropping for small farmers, the use of legumes may help yields. Intercropping may be a practical way of growing a variety of crops needed for the household.

2) Line sowing
This could be an efficient improvement especially where weeds are serious. In Africa, this may require mechanization using animal draught. There is a whole technology developed in India which needs to be transferred to Africa, including the village maintenance services provided by blacksmith and carpenters.

3) Sowing time
In Africa, time of planting is often of critical importance for yield; working up a fine seed bed could take too much time, especially without animal draught power.

4) Weed control
In Nepal, transplanting is always used and it is useful in filling gaps in the stand. Transplanting deserves a lot more emphasis, as there is evidence of yield benefits. Most important, transplanting provides a way of seeding in time into a nursery and of a weed control by thorough cleaning of the remaining (5/6th) of the area being cultivated. Wild finger millet in Africa presents a daunting weed problem for other types of control. In Africa, Striga can become a serious problem, especially in pure stands of finger millet.

5) Organic manure
The use of farmyard manure and compost was mentioned by several delegates, and this important traditional practice deserves study to determine
most effective methods of preparation and application. Results in India suggest benefits from incorporating legume residues in situ.

6) Transfer of technology

Recommended practices, should be developed in close consultation with the farmers, giving special attention to the limiting factors in their existing systems. Where recommended practices have been developed, surveys should be made to determine which factors are being adapted and which are not being adapted. The various constraints preventing the adaption of the latter should be carefully evaluated and alleviated as far as possible.

REPORT OF PESTS AND DISEASES DISCUSSION GROUP

Chairman: K. Krishnamurthy
Discussant: J.P.E. Esele

A. DISEASES
1. Blast is the most serious disease of finger millet. It appears at different stages of plant growth. Different biotypes of blast fungus also could be present as in other crops, and this area of racial differentiation of blast is worth investigating. Development of varieties with effective genetic resistance is a high priority.

2. Viral diseases on finger and foxtail millets have been reported from many countries. Insects are generally associated with viral transmissions. There is need to understand the biology of vectors and their relationship with viruses in the transmission of viral diseases.

3. Leaf spot diseases are important in several African countries on finger millet. Resistance breeding is the best and most effective in preventing yield losses.

B. PESTS
1. Birds and aphids have been identified as serious pests of finger millet in Africa. Stem borers occur on finger millet in Asia. Finger millet earhead pests deserve attention in Africa and Asia.

2. Shootfly has been identified as the most predominant pest on small millets in Asia and the USSR. Shootfly escape mechanisms by manipulating sowing time and other cultural practices, if identified for various regions of the production, would be very helpful.

3. The biology and dynamics of most important pests of small millets, the occurrence of alternate and/or collateral hosts and screening of the available germplasm in pest sick plots deserve investigations.
4. Besides inbuilt resistance and cultural control of pest populations, critical studies on the occurrence of natural enemies, their breeding and release in farmers' fields are required. The occurrence of pests and losses in mixed, inter and relay cropping systems is to be investigated.

C. PEST AND DISEASE CONTROL

1. Considering the economic value and status of small millets, it can be said that integrated disease/pest control measures are to be adapted with emphasis on inbuilt resistance, cultural control, biological control and chemical control in that order.

REPORT OF FOOD USES DISCUSSION GROUP

Chairman: P. Pushpamma
Discussant: N.G. Malleshi

1. Screening of germplasm for malting and popping characteristics and breeding varieties for improved malting and popping characteristics.
2. Development of simple milling machinery and making it available in millet growing areas.
3. Diversification of uses of small millets and development of health or speciality foods from millets: diabetic foods, high fibre foods, weaning foods, flakes, quick cooking cereals, etc.
4. While breeding varieties, attention should be paid to retain the desirable qualities of millets such as good storage quality and high mineral content.
5. Analysis of varieties grown under different agroclimatic conditions for nutrient content and polyphenols.
6. Studies on fine structure of millet grains.
7. Setting up of a permanent millet quality laboratory for analysing or testing the varieties and taking research work on millet product formulations.
8. Improving status of millets by substituting rice and other major cereals with millets in prestigious foods.
9. Publication of booklets on millet products and giving wide publicity for these.
10. Consumer preference checks for different millet products and improving their quality and consumer acceptability.
REPORT OF FORAGE USES DISCUSSION GROUP

Chairman: P. Pushpamma
Discussant: B.R. Hegde

1. Millet straw especially from small millets is highly relished by cattle. The cost of straw in several millets compensates the cost of inputs in cultivation. Moreover the peasant farmers depend on this by-product to a large extent in maintaining their milch and draught animals. In many countries the farmers are willing to sacrifice grain but not fodder. This point has to be kept in mind in future breeding programmes.

2. Efforts are essential to identify suitable small millet varieties for fodder purpose. Millets as green forage crops assume more importance especially in scarce rainfall years. Carefully selected varieties should be able to produce large amount of green fodder in a very short time.

3. Types suitable for multi-cuttings have to be identified which can be grown even under irrigated conditions.

4. Suitable millet varieties have to be identified for establishing in waste lands and eroded lands. Methods of establishing such crops also need to be worked out.

5. The dry straw of many millets may not be nutritious. Methods to fortify such low value fodder by use of urea, molasses, etc. have to be worked out and popularised.

6. The other possibility of improvement of the quality of the straw would be to include a legume along with the millet crop itself.

GENERAL RECOMMENDATIONS

Chairman: H. Doggett
Discussant: K.W. Riley

1. The papers presented at the International Workshop along with the discussions and the recommendations be published for wide circulation. The International Development Research Centre is requested to fund the publication of the proceedings of the First International Workshop on Small Millets.

2. Among the small millets, finger, foxtail and proso millets appear to have wider clientele and their importance and development aroused considerable interest. The reasonable consistency in performance, the ecological range and the production potential of kodo and barnyard millets have been noted.
Discussions & Recommendations 363

The role of teff in the Ethiopian economy with its possible extensions elsewhere has been recognised. Little millet with limited production potential has its areas of specific adaptation. The growing demand for food and a variety of food products calls for interest and investment in their development.

3. The need for International Small Millets Research Institute was felt. The CGIAR system may consider this proposal.

4. A steering committee of 5 members has been elected and charged with the responsibilities of identifying a network for exchanging germplasm, transferring information and look into other service facilities. The members of the steering committee are:

5. The need for obtaining definite figures of area, production and productivity from different countries has been pointed out. This may help the planners and the policy makers for deciding priorities. This may also attract the attention of the international community of nations.

6. The need for organizing international small millets adaptation trials was felt.

7. The need for exchanging published literature on small millets through a nodal agency has been recognised.

8. The need for encouraging scientific visits and providing expertise where necessary has been felt.

9. The need for providing training facilities to scientific and technical personnel has been expressed.

Dr. A. Seetharam Chairman
Dr. Seyfu Ketema Co-chairman
Dr. K.W. Riley Secretary
Mr. Chen Jiaju
Mr. Figuhr Muza
General Index

Accessions, 48, 49, 56, 118, 120
 of finger millets, 163, 164, 175
 of foxtail millets, 98
 of ragi germplasm, 50
Acevedo, E., 200
Adaptive Development Project, 146
Adaptive mechanism, and productivity
 under drought stress, 195
Adaptive strategies, 184
 under rainfed conditions, 185
Adipala-Ekwamu, 297
Adlay (coix) crop, 25-26
Advanced Varietal Trials, Farmers' Field Trials, 91
Africa, 4, 13, 15, 113, 115, 359, 360
 minor cereals in, 21-23
 observations from, 5-6
African germplasm, 65
African mole cricket, 290
African region, southern, fingermillet in,
 115-25
Agnihotri, 3, 6, 7, 8
Agricultural commodities, prices of, 163
Agricultural farming system, 129
Agricultural land, in Ethiopia, 168
Agricultural production, 345
Agricultural Statistics Division (Nepal), 85, 88
Agricultural zones, 145
Agritex (Agricultural Technical and Extension Services), 303
data, 161
Agro-climatic conditions, 212, 231, 361
Agronomic practices, 282
 in Uganda, 294-96
Agronomic research, 43
Agronomic studies, 122
Agronomy, 6, 12, 156
Agro-techniques, and productivity, 38
Aimen, R.R., 25
' Ajono', 296
Alagarswamy, G., 198
Alates, 268
Alcoholic drinks, use of teff in, 311
 see also Beer, Brewing
All India Co-ordinated Millet Improvement Project (AICMIP), 9, 10, 11, 12, 15,
 46, 56, 65, 211, 233
Almora, 66, 229, 230
America, 249, 252, 325
 minor cereals in, 19-21
American wild rice, 20
Amino acid contents, 328
Amrith Kumar, M.N., 343
Amylases, 334, 336
Ananthanarayana, R., 215
Andhra Pradesh, 9, 10, 11, 35, 115,
 222, 232, 246, 248, 249, 250, 342
 utilization of small millets in, 321-24
Animal feed, 88, 93, 342, 345
Animal fonio, 21
Animal production, 345
 industry, 341
Ants, 256, 268
Anuradhapura (Sri Lanka), 79
Aphids, 244, 255, 257, 266-67, 269,
 273, 282, 296, 360
 biological and chemical control
 of, 267
 root, 283
Appadurai, R.R., 283
Ardhya, K.M., 46
Area, decline in, under small millets, 233
Area, under small millets, 6, 7, 8, 33-42, 43, 45, 46, 68, 85, 237
in Bangladesh, 71-72
in China, 93-94, 102
in Ethiopia, 167
in India, 209, 237
in Kenya, 150-52
in Nepal, 86
in Sri Lanka, 77-81
in Zimbabwe, 161
Areki, 174
Arkel, Van, 154
Army worms, 255, 256, 259, 282, 290, 296, 303
Arnold, 108
Arora, R.K., 24, 25
Artificial induction, 103
Ascherson, P., 120
Ashok, E.G., 214
Asia, 4, 26, 360
Aspinall, D., 184
Asrat, F., 170, 174
Assam, 23, 24, 25, 26
Asthama, 248
Attere, A.F.Y., 118
Austria, 26
Awadalla, M.Z., 332
Ayyamperumal, A., 60
Ayyangar, G.N.R., 27, 61
Backcross breeding technique, 110
Bacterial blight, 250, 297
Bajra, 7
Bangalore, 4, 215, 218, 221, 241
Bangladesh, 25
area under millets in, 71
cropping systems in, 271-72
genetic resources and breeding of small millets in, 71-75
pests and diseases in, 271, 273
production technology in, 271, 272
small millets utilization in, 271, 273
Bangladesh Agricultural Research Institute, 72, 271
Banana-coffee region, in Uganda, 129
Banana-millet-cotton region, in Uganda, 129
Banti, see Barnyard millet
Bantu tribe, 129, 149, 294
“Baraga”, 344
Barley, 19
Barnyard millet, 3, 4-5, 12, 13, 15, 24, 33, 35, 46, 71, 92, 154, 161, 229-31, 232, 257, 259, 268, 325
cropping system and production technology of, in India, 229-31
diseases in, 252
genetic diversity in, 55
Barnyard millet improvement centre (Almora), 229
Becker-Dillingen, J., 23
Beer, use of finger millet in, 123, 129, 130, 136, 156, 174, 299, 304, 318, 347, 351, 352-53
Beijing, 98
Belavady, B., 335
Beverages, milk-based, 335
use of finger millet in, 88, 333
Bhide, N.V., 25
Bierhuzin, J.F., 187, 190
Bihar, 7, 10, 11, 35, 226, 227, 228, 229, 232, 249, 250, 252, 342
Biochemical characterization of small millets germplasm, 357
Biofertilizers, 216, 226, 263
for foxtail millets, 223-24
for proso millets, 228
Biological control of diseases, 264, 265, 266, 269, 290
Biological yield, 187
Biomass, 19, 59, 187, 195
growth duration and, 204
and low canopy transportation, 189
Biotechnology, 358
Biotypes, 108
Bird damage, 149, 283, 296, 306, 360
Bird feed, 348
Black beetles, 296
Black, C.R., 187
Black fonio, 21
Black gram (Vigna mungo), 329
Black pentatomid, 256
Blast disease, 50, 60, 90, 123, 138, 278, 283, 289, 297, 360
chemical control of, 239
in finger millet, 237-41
in foxtail millet, 246
resistance to, 51, 239, 241
Blight diseases, 241-42
chemical control of, 242
Blum, A., 190
Bondale, K.V., 33
Bor, N.L., 23
Borers, 60, 269
pink, 257, 264
sorghum, 257, 264
white, 257, 264
Borlang method, 106
Botswana, 115, 116, 117, 125, 154
germplasm collection and maintenance in, 117
Boyer, J.S., 200
Bran, and white millet flour, 327
Brassica, multicropping with teff, 309
Bredon, R.W., 351
Breeding, methods (programme), 15, 16, 51, 60-68, 101-102, 103, 106, 211, 357
for blast resistance, 239, 241
of finger millet, 119, 137
genetic resources and, in Bangladesh, 71-75
genetic resources and, in Sri Lanka, 77-84
of high yielding varieties, 119
in Kenya, 149
modern, 45
mutation, 67-68, 138-39
objectives of, in Ethiopia, 174
organisations for, 101
of proso millet, 107-109
of proso millet in USSR, 105-11
quality of, 358
recombination, 56, 65-67
for resistance to diseases, 110
strategy for, 105
of teff, 171
Breeding, and varietal improvements, 83
in China, 101-104
in Ethiopia, 170-71
in Tanzania, 164, 166
Brewing, use of millets in 123, 124, 125, 155, 209, 294, 303, 307, 333, 334
Brink, D.E., 22, 28
Brittle grass, 20
Broadcast crops, and weeding, 122
Broadcasting, of proso millets, 227
of seeds, 214
Broomcorn millet, 23, 26, 27
"Brown rice", 329
Brown stripe disease, 289
Brown top millet, 46
Brucher, H., 20
Bugisu (Uganda), 295
Bulrush millet, 130, 315
Burt-Davy, J., 314
Burundi, 115, 175
Busseoli sp., 297
Busson, F., 21
Butler, E.J., 241, 248, 250
Byproducts, 342, 362
Byre Gowda, M., 50
CAAS, 98
Cake preparations, from millets, 273, 307, 347
Calcium content, in millets, 209, 325, 326, 341
Calder, A., 124, 303
Callen, E.O., 20
Canopy, characteristics, 187
photosynthesis, 197
positions, different, and photosynthetic rate, 193
positions, stomatal frequency under different, 191
transportation, 187, 189, 196
water loss, 187
Carbohydrates, content, 326, 335, 341, 342, 351
remobilization of reserve, 202, 203
Carbon exchange ratio (CER), 190
Carbon fixation, 190
Carotenoid content, 109
Carr, W.R., 125
Cash crops, 129, 155, 280, 281, 282
Cassava, 130, 305, 352
 and groundnut rotation, 294
Catch crops, 10, 344
Caterpillars, earhead, 257
 leaf, 257, 282
 red hairy, 257
Cattlefeed, 283, 311
 see also forage
Cattle manure, 280
Cell wall constituents, 342
Central Africa, 24
Central African Republic, 4-5
Central Food Technological Research Institute (CFTRI), 329, 334, 335
Central Research Station, of BARI, 72
Central Sector Schemes, 42
Central Seed Committee, 61
Centre for Hill Agriculture (U.P.), 229
CER, 190
Cereals, 23-28, 167
 area under, 19
 area and production of, in
 Uganda, 127, 128
 coarse, 35
 in Kenya, 150, 153
 malting characteristics of, 336
 minor, 19-28
 in Nepal, 86
 popping of, 333
 production of, in Ethiopia, 173
CGIAR system, 363
Chad, southern, 115
Chandresekhar, M.R., 333, 334
Chang, K., 26
Channabasavanna, G.P., 265
Characters, rectification of, in breeding, 67
 and evaluation, 98-99
Cheena (proso) millet, 71, 92, 271
Chemical composition, of finger millet,
 kodo millet, foxtail millet and proso
 millet, 343
 of finger millet, 158, 159, 342, 343
 of foxtail millet straw, 343
 of proso millet fodder, 345
 of sorghum, 158, 159
 of stem borers, 264-65
 of wheat, 158, 159
Chemicals, use of, in weeding, 217
Chevalier, A., 21
Chibero Agricultural College, 119
Chilo sp., 297
Chilomenes sexmaculata, 267
China, 4, 24, 249, 325, 344
 breeding and varietal improvement
 of foxtail millet in 101-104
 cropping systems, production tech-
 nology and pests and diseases of
 foxtail millet in, 287-90
 genetic resources of small millets
 in, 93-100
 use of millets by royal families of, 347
 utilization of small millets in, 347-50
Chitedze Agricultural Research Station, 117
Chitemane ash, 122
Chitemane cultivation, 121
Chlorosis, 249
Chomko, S.A., 20
Choudhari, L.B., 227, 228
Clayton, W.D., 21
Climatic conditions, 97, 106, 209
CIMMYT (Mexico), 154
Clontier, P., 174
Coble, L.S., 4
Cockscomb finger millet, 22
Coimbatore, 265
Coleman, L.C., 242
Colonization, 149
Common millet see proso millet
Comparison, of small millets, 12-13
Conference of field crops, 97
Conidia, air borne, 238
Contact method, 65
Control, of diseases and pests, 269, 290,
 361
 of blast, 239, 246
 of blight, 242
 chemical, 269, 290
of downy mildew, 251
of earhead caterpillars, 266
of head smut, 251
of shootfly, 258, 262-63, 264
of smut, 243-44, 249, 252
of stem borers, 264
of wilt or foot rot, 242

Cooperative unions, 146
Corn borer, 290
Costanza, S.H., 21, 169, 171
Cotton cropping, 130, 225, 305
millet and, 294
Crabgrass, 23
Crabtree, J., 329
Crawford, G.W., 20
Crop Breeding Institute (CBI), 163, 164
Crop Breeding Institute of the Research and Specialist Services, 120
Crop duration, 204, 316
Crop growth, and photosensitive types, 205
Crop growth rate (CGR), 200, 205
Cropping systems, in Bangladesh, 271-72
in China, 287
in Ethiopia, 309
of finger millet, 218-19
of foxtail millet, 224-27
in India, 209-33
in Kenya, 305-306
of kodo millet, 221
in Nepal, 275-76
in SADCC region, 120-21
in Sri Lanka, 279-82
in Tanzania, 315-18
in Uganda, 293-94
in Zimbabwe, 301-303
Cross cultivation, 106, 138, 214
Crust situation, seedling under, 182
Cruz, A.W., 20
Cubero, J.I., 26
Cultivars, medium duration, 198
“Cultivation of Foxtail Millet in China”, 99, 289
Cumulative water used, during crop growth, 195, 196
Dagnatchew, Y., 311
Damage, due to aphids, 266
due to earhead caterpillars, 265
due to stem borers, 264
Das, N.L., 217
David, B.V., 265
David, J.C., 261
Dead hearts disease, 220
Debraning, 329
Debre Zeit experiment station, 174
Deccan Plateau, 222
Defoliation, 282
Dehulling, 322-23
Dehusking, 329
Dehydration tolerance, 181
Dekaprelerich, L.L., 26
Demand, for small millets, 233
Dendy, D.A.V., 329
Department of Agriculture, of Uganda, 145
Department of Agriculture, of Zimbabwe, 118
Department of Agricultural Research (DAR), 117
Department of Food and Agricultural Marketing Services (Nepal), 85
Department of Research and Specialist Services (Tanzania), 163
Desikachar, H.S.R., 327, 332, 333, 334
Developing countries, 168
Developmental effects, 42-43
Developmental plasticity, 197-98
Devendra, R., 197
de Wet. J.M.J., 4, 5, 13, 15, 19, 20, 21, 22, 24, 26, 28, 161
‘Dhindo’, 88
Dhliwayo, H.H., 122
Dhoni (Bihar), 10, 11, 66, 222, 223, 227, 228, 229, 230
Dhonukshe, B.L., 67
Diabetes, food for, 283, 335, 338
Dias, C.A.R., 258
Digestibility coefficient, of finger, kodo, foxtail and proso millets, 343
Dinajpur district (Bangladesh), 271
Dindori, 66, 220, 226
Direct seeding, of finger millets, 276-77
Diseases, 60, 283, 360
and pests in Bangladesh, 271, 273
in barnyard millets, 252
downy mildew (green ear), 249-50, 290
in finger millet, 237-46
in foxtail millet, 246, 248-50
in India, 237-52
in kodo millet, 250-51
in little millet, 250

Distribution and production statistics, of
Uganda, 129-34

District variety trials, 145

Ditch millet, 93

Diversity, in small millets, 52, 55

Dixon, D.M., 24

Doggett, Hugh, 3, 357, 359, 362

Dore, W.G., 20

Downy mildew (green ear) disease,
243, 249-50, 290

Drilling, 214, 229

Drought, 97
avoidance, mechanism for, 185
in Ethiopia, 170
loss due to, 179
resistance, 110, 190
stress, 179, 180, 184, 198
tolerant, 20, 21, 23, 98, 185, 306, 358

Dry farming conditions, 42, 231

Dry fodder, 342

Dry matter (DM), 187, 190
photosynthetic rate in genotypes
with, 193

Dry zones (region), 4, 77, 79, 81, 105, 279-80, 341

Dryland crops, 174, 218, 342

Dryland farming, 68

Dunbar, A.R., 123

Dwarf varieties, 59, 341

Dwivedi, H.P., 61

EAAFRO (Uganda), 154

Ear contribution, to grain yield, 202

Earhead caterpillars, 265-66, 282

Earhead worms, 255, 269

Early maturing varieties, 103, 140-42, 175

East Africa, 90, 115, 123, 161, 315, 341

East African community, 146

East Indies, 252

Eastern or teso system (Uganda), 130

Eastern Zaire, 115

Eberhart, S.A., 15, 16

Ecological condition, for seedling, 181

Economic importance, of small millets,
93-94, 345

Economic loss, due to earhead caterpillars,
265-66
due to shootfly, 258
due to stem borers, 264

Edible content, 326

Egypt, 15, 24, 169

‘Ekitu’, 297

Eleusinin, 351

Emasculation methods, 357
dry, 106
hand, 64, 65, 102, 170
hot water, 102, 164
and hybridization techniques, 138

Emchebe, A.M., 297

Endeshaw, B., 169, 170, 171

Endosperm, 109

‘Enjera’, 311, 312, 313, 314, 332

Epidermis, 269

Eritrea (Ethiopia), 173

Esele, J.P.E., 293, 297, 351

Ethiopia, 5, 6, 22, 90, 115, 149, 154, 332
area under teff and finger millet in,
167-69
cropping systems, production technol-
ogy, pests and diseases and utilization
and forage use in, 309
economy of, 363
nutrition survey in, 311
production trends, germplasm resour-
ces, breeding and varietal improve-
ments in, 167-77
sorghum improvement programme
in, 174
Ethiopian Nutrition Institute, 312
Eurasia, minor cereals of, 23-28
Europe, 4, 26
European corn borer, 290
Evaluation, 56
 of accessions in finger millets, 49
 of germplasm, 51
 and grouping of foxtail millet, 52
Evapotranspiration (ET), 184, 187
Exotic collections, 47
Export, 34, 298
Extended products, 332, 338
Extension officers, 43
Extension services, 38, 133, 298
False wireworm, 290
Famine, 3, 4, 353
 millets as, crops, 59, 155, 174
‘Famine reserves’, 231, 342, 344
Faridpur (Bangladesh), 271
Farming System Research Programme, 298
Farm yard manure (FYM), application of, 216, 224, 226, 228, 272
Fat content, 324, 325, 326
Fatty acid content, 347
Feed input, 341
Fernando, G.W.E., 77
Fernando, Henry, 16
Fertility, 68, 101, 219
Fertilizer, application of, 209, 230, 231, 233, 272, 288, 302
 for barnyard millet, 230
 for finger millet, 215-16
 for foxtail millet, 223, 226
 inorganic, 272, 280
 and manures for kodo millet, 221
 for proso millet, 228
 rate, 310
Fertilizer use, and control of diseases, 261
Fibre content, 326, 338
Field control, 290
Field cricket, 257
Field evaluation programme, 179
Finger millet, 3, 4, 5, 6, 13-14, 15, 21-22, 33, 45, 46, 83, 93, 133, 149, 150,
 237, 257, 279, 283, 284, 325
 accession of, 50, 56, 163, 164
 area under, in Ethiopia, 175
 area under, in Uganda, 293
 area and production of, 116, 167-69
 area and production of, in India, 7, 34-35, 36-37, 209
 area and production of, in Nepal, 85, 86-88, 90, 91
 area and production of, in Sri Lanka, 77-79, 83, 84
 area and production of, in Uganda, 127, 129, 130-32
 area and production of, in Zimbabwe, 161-65
 breeding, 65, 137, 146
 chemical composition of, 159, 343
 cropping systems and production technology in India, 211-19
 cropping system and production technology in Nepal, 275-78
 cropping system in Tanzania, 315-18
 cropping system and production technology in Uganda, 293-99
 diseases and their management in, 237-46
 diversity in, 52
 dryland, 215
 earhead caterpillars on, 265-66
 enzyme, 123
 evaluation and grouping of, 49
 as forage, 341-42
 genetic resources and varietal improvement in Nepal, 85-92
 genotypes, 198
 germplasm accessions, in SADCC/ICRISAT regions, 121
 hybridization of, 14, 65, 66
 improvement of, in Ethiopia, 173-76
 improvement of, in Uganda, 137-46
 ‘Indaf’, 14
 in Kenya, 305-307
 processing and utilization of, in India, 351-53
 production of, in Kenya, 150
 production of, in Uganda, 134
productivity of, 66, 179-205, 211
pureline selection of, 62
as relay crop, 275, 277
research in SADCC region, 115-25
research in Tanzania, 155-59
screening trial, 143-45
and soybean crops, 218
statewise area and production and
yield of, 36-37
straw, 342
streak, 268
trial, 165
varieties, 60, 61, 133
white, 60, 123
in Zimbabwe, 301-304
Finger Millet Regional Cooperative Trial
(FMRCT), 164
Finger Millet Regional Introduction Trial
(FMRIT), 164
Fisher, G.W., 248
Five Year Plan, Seventh (India), 42
Flakes, 332, 338
Flea beetle, 256, 258, 259, 260, 273
Floret size, 357
Flour, millet, 303, 329, 334
Flowering time, 140, 143-45, 176, 217
Fodder, 4, 33, 45, 68, 85, 209, 229, 250,
273, 342
Fonio millet, 3, 5, 325
FAO estimates, 5, 49
Food, use of millets as, 88-89, 123-24,
155, 156, 283, 299, 303-304, 318,
327, 351, 352
Food, and industrial uses, processing for,
325-38
Food industry, 337, 347
Food processing, 325-38
Food products, conventional, 329, 332
non-conventional, 332-35
Foot rot, 242-43, 273, 278
Forage, 4, 304, 341-45, 348, 351, 353
of kodo millet, 344
of teff, 314
Fort Collins (USA), 164
Foxtail millet, 3, 4, 9-10, 12, 15, 23, 26,
33, 35, 45, 46, 49, 51, 61, 71, 72,
77, 79, 93, 101-104, 115, 149, 150,
154, 161, 232, 237, 256, 258, 259,
268, 271, 272, 279, 283, 284, 321,
323, 325
accession of, 50, 56
in Bangladesh, 271-73
blast disease in, 246
breeding and varietal improvement in
China, 101-104, 287-90, 347
chemical composition and digestibility
coefficient of, 343
cropping system and production
technology of, 222-25
diseases and their management in,
246, 248-50
downy mildew disease in, 249-50
evaluation and grouping of, 52
forage of, 344
genetic resources of, 93-100
germplasm, characteristics in, 73 81
hybrid varieties of, 66
improvement of, 103-104
protein percent and distribution of, 53
resistant varieties of, 100, 259, 260
rust disease in, 248
seed oil and distribution in, 53
smut disease in, 248-49
Foxtail millet webworm, 290
Fuel use, 273
Fungicides, 283, 290, 297, 359
Fungus, 238, 242, 243, 244
formation in downy mildew, 249
formation in foxtail millet, 246, 248,
249
Future strategy, for insects and pests,
268-69
Gahukar, R.T., 266
Gall midge, 255, 256, 267, 269
Gametocides, 61, 65, 357
Gamma irradiation, 67
Gautam, R.C., 209, 215, 221, 223
Gay, C., 20
Gebrekidan, B., 332
General Recommendations, 362-63
Gelatinisation temperature, 335
Genes, 14, 357
Genetic purity, 49
Genetic resistance, for blight, 242
Genetic resources, and breeding of small millets,
 in Bangladesh, 71-75
 in Kenya, 149-54
 in Sri Lanka, 77-84
 in Zimbabwe, 161-65
Genetic resources, conservation of, 97-100
 of finger millet in Tanzania, 156
 of proso millet, 99-100
 of small millets, 45-46
 of small millets in China, 93
 of small millets in Tanzania, 156, 157
 and varietal improvement of finger millet in Nepal, 85-92
Genotypes, and high CWV with low TQ, 196
 high yielding and photosensitive, 205
 identifying of, 187, 195
 photosensitive, 203, 205
 resistant to pests, in finger millets, 265
Genotypic differences, in mobilizing carbohydrates, 203
 in germination of finger millets, 184
Genotypic variations, 197
 in CGR, 200
 in germination of finger millets, 182, 184
 in growth and yield attributes, 192
Germination, of finger millet seeds under stress and non-stress plants, 183
 and seedling establishment, 180-82
Germplasm, 15, 45, 72, 89, 125
 accessions, 121, 239, 358
 availability of, 46-47
 characterization of, 49-51
 collection and maintenance of, 47, 116-18, 154, 169
 entries, to blast disease, 240
 evaluation of, 51
 of foxtail millet, 101
 local and exotic, 65, 91
 resources, 81, 83, 89-91
 resources in Ethiopia, 167, 169-70, 174
 resources in Kenya, 154
 resources in Tanzania, 163-64
 resources in Uganda, 135
tolerant to rust disease, 248
 utilization of, 55-56
Germplasm unit (Bangalore), 46, 47
Gidda Ragi, 60
Gifford, E.W., 20
GKVK experiment station (Bangalore), 186, 241
Glume accessions, 51
Gojjan (Ethiopia), 173
Gond, J.V., 67
Gonder (Ethiopia), 173
Gopalan, C., 328, 335
Gould, F.W., 23
Gowda, B.T.S., 56
Graebuer, P., 23
Grain colour, 106
Grain loss, due to blast, 237, 238, 246
due to mottle streak virus, 245.
Grain Marketing Board, 303
Grain mill, mini, 330
Grain price, 7
Grain quality, selection for, 109-10
Grains, smut sori in, 243
Grain spot, 273
Grain weight, 106, 120, 198, 199
Grain yield, 139, 156, 170
 aphid attack and, 267
 of finger millet, 140-42, 146, 176, 180
 increased, 212
 from trials at Serere, 143-45
 range and mean value of, 190
 shootfly damage and, 262, 263
 in Tanzania, 157
 in Zimbabwe, 304
Grasses, 19
Grasshopper, 256, 257, 278, 282, 296, 303
Grammetric techniques, 190
Greener (downy mildew) disease, 243, 249
control of, 290
Green forage crops, 280, 362
Green foxtail millet, 26, 93
Green gram (Vigna radiata), 334
Grewal, J.S., 242
Grinding, of millets, 124-25, 129, 327, 329
Gritzenko, R.J., 27
Groundnut, and kodo millet intercropping, 221
Growth duration, and biomass productivity, 204
Growth parameters, under moisture regimes, 194
Grubben, G.J.H., 190
Guddapah Rajampet Ragi, 60
Guinea, 5
Gujarat, 12, 35
Gundhi bug, 256
Gupta, H.C., 264
Gupta, S.C., 115
Gurumurthy, B.R., 197
Gwebi, 165
Gweti variety testing centre, 120

Hagari, 225
Hamid, M.A., 71, 271
“Harka”, 344
Harinarayana, G., 51, 59, 60, 61, 255, 357
Harlan, J.R., 21
Harvesting, 296, 302-303, 306, 310, 311
operations in Nepal, 278
and threshing, 317-18
Harvest index, 59, 184, 187
range and mean value for, 190
Hasegawa, S., 186
Havanagi, G.V., 216
Hay fever, 248
Head blast, in finger millet, 175
in kodo millet, 250-51
Head smut, 252
Hebei Province, 97, 103
Hegde, B.R., 45, 209, 212, 214, 216, 217, 362
Heilongjiang province, 103
Helminthosporium fungal disease, 283
Henan province, 103
Henrard, J. Th., 23
Herbicide, 310
Heterosis breeding, 65
High yielding varieties (HYV), 43, 83, 88, 119, 138, 255, 358
and integrated cultural technology, 289
of rice and wheat, 71
Hill, A.G., 119
“Hill Crops Improvement Programme” (HCIP), 91
Hilu, K.W., 22, 161
Himachal Pradesh, 35, 222
Hinze, G., 335
Hiwot, B., 332
Hjelmquist, H., 27
Ho, P., 26
Home Science Department of Agricultural University, 321
Homozygosity, 59
Hooker, J.D., 23
Hormonal regulation, 181
Hoseney, R.C., 327
Hosmani, M.M., 217, 223
House, L.R., 115
Howden, R.H.G., 122, 302
Hrishi, V.K.H., 60
Hsiao, T.C., 184
Hu, H.K., 65
Hubbard, C.E., 21
Huffnagel, H.P., 174
Hullubele, 60
Hulse, J.H., 135, 327
Hurihittu, 333
Husked millet, 347
Hybrid crosses, 138
Hybrid plants, 119
Hybrid seeds, 16
Hybridization, 14, 16, 50, 56, 61, 65, 83
artificial, 55
breeding, 101, 102, 103
contact method, 61
controlled method, 61
General Index 375

emasculcation and, techniques, 138
intraspecific, 170
marker plant types, 61
polycrosses, 61
in proso millet, 107
protogyyn, 61
sterility induction and utilization of, 61
Hydration tolerance, 181
Hydraulic conductivity, 186

IBPGR, 163, 164
ICAR, 9, 43, 46, 66, 72
ICGR Millet Germplasm Data Bank, 98
ICRISAT, 72, 117, 120, 154, 163, 164, 174
IDRC, 9, 91, 211, 283
Ileji (Tanzania), 155
Ilonga Agricultural Research Institute
(IARO, Ilonga), 155
Ilyin, V.A., 105
Improved varieties, 137, 170
of finger millet, 146, 298
of foxtail millet, 102, 104
non-adoption of, 211
Imbreeders, 358
Incubation period, of streak virus, 244
India, 4, 5, 14, 15, 22, 25, 27, 115, 325
area under small millets in, 8
breeding and varietal improvements in, 59-68
cropping system and production technology in, 209-33
diseases and their management in, 237-52
genetic resources of small millets in, 45-56
germplasm collection in, 47
insect pests and their management in, 255-69
observations from, 6-9
potential for improvements in, 9-12, 13
small millets in, 33-43, 341-45
Indian mallow bug, 290
Indo-African crosses, 66
Induced mutation breeding, 101
Industrial Research and Development
(Kenya), 307
Industrial use, of small millets, 209, 233, 325-38
Information, limited, 327
Inner-Mongolia—Autonomous Region, 103
Inoculation feed period, 244
Inputs, 43, 271, 277
Insect damage, 322
Insects, and millets, 261
Insect pests, and their management, 255-69
Insecticides, 269, 282
Institute of Animal Science, Chinese Academy of Agricultural Sciences, 350
Institute of Crop Breeding and Cultivation, 98
Institute of Crop Germplasm Resources, 98
Intensive farming system, 59, 280
Intercropping, 215, 233, 359
of barnyard millet, 230-31
of finger millet, 155, 218, 295, 301, 317, 318
of kodo millet, 221-22
of proso millet, 228
and shootfly occurrence, 262
International Board for Plant Genetic Resources (IBPGR), 49, 117, 135, 154
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 27, 116
International Development Research Centre (Canada), 66, 72, 233, 362
International Workshop on Small Millets, 362
Inter-terrace management, for finger millet, 219
Intervarietal improvement, 61, 65-67
Intraspecific hybridization, 106, 170
Iradiation, 101
Irrigation, 14, 77, 79, 168, 212, 228, 231, 280
basin system of, 281
Italian millet, 92
see also Foxtail millet
Italian rye grass, 342

Jaffna district, 79, 81, 280
Jagannathan, T., 214
Jameson, J.D., 137
Jammu and Kashmir, 35
Japan, 4, 24, 26, 249, 252, 325, 342
Japanese millet, 24, 25, 93, 94
Japanese barnyard millet, 3, 4, 284
Jardin, C., 21
Jassid insect, 256
Jansen, N.F., 15
Jiaju, Chen, 93, 101, 287, 347, 363
Jilin province, 103
Jinzhuany brigade, 289
Job's tears, 93, 325
Jones, H.G., 187
Johnson, D.T., 124, 301, 302, 303
Johnson, R.M., 115
Joshi, P.K., 3, 6
Jotwani, M.G., 258, 266

Kabarole, 130
Kaguno millet, 92
Kajale, M.P., 25
Kaliappa, 217
Kamat, M.V., 335
Kanke (Bihar), 229
Kaan (foxtail) millet, 71, 271
“Kapuku” (finger millet), 117
Karahooja area, 294, 352
Karnataka, 7, 9, 11, 12, 35, 115, 180,
 222, 223, 224, 232, 242, 243, 246,
 248, 249, 250, 264, 342
 finger millet in, 35, 216
Kasparian, A.S., 26
“Katombele” (fingermillet), 118
Kavre (Nepal), 90
Kazakhstan, 105, 107
Kebede, Yilma, 173
Kenya, 115, 121
 area and production of millets in,
 151-52
cereal crops in, 153
cropping system, production technology and utilization of small millets in 305-307
Eastern province of, 150
germplasm resources in, 154
 genetic resources and breeding of small millets in, 149-54
production trends in, 150-52
Kerala, 25
Kernel smut disease, 252, 290
Keshavamurthy, K.V., 244
Ketemu, Seyfu, 167, 309, 363
Khair season, 35, 229, 342
 barnyard millet during, 229
 finger millet during, 212, 271, 272
irrigation during, 218
Khizzah, Bill Williams, 127, 137
Khumal (Nepal), 90
Kigezi (Uganda), 130, 294
Kishore, P., 264
Kob (Ethiopia), 175, 176
Kodo millet, 3, 4, 5, 12, 13, 15, 25, 33,
 35, 45, 46, 59, 61, 161, 232, 237,
 256, 258, 259, 267, 284, 321, 323,
 325
 chemical composition and digestibility coefficient of, 342
cropped with cereals and oilseeds, 221
cropping system and production technology in India, 220-22
diseases in, 250-51
extraction rate of, 323
forage, 344
genetic diversity in, 5
hybrid varieties of, 66
rust disease in, 251
shootfly resistance in, 260
Koraput local little millet, 60
Korea, 24, 102
Kornicke, F., 23, 26
Kraal manure, 121
Krishnamurthy, B., 264, 265
Krishnamurthy, K., 215, 359, 360
Kulkarni, N.B., 246
Kumar, M. Udaya, 179
Kumate, J., 332
Kundu, G.G., 264
Kurunegala (Sri Lanka), 79
Kurien, P.P., 327
Kushtia (Bangladesh), 271
Kwashiorkor disease, 351

Lacewing, 267
LAD/DM ratios, 197
Ladybird beetles, 267, 282
Lake Victoria, 115, 127, 150, 294, 305, 307
Landholding size, in Sri Lanka, 212
Land preparation, 212, 288, 294-95, 306, 309
Land races, 60, 101, 106, 170, 190, 357
Land Resources Mapping Project (Nepal), 86
Land use system, of tillage, 122
Larrin, Arturo Fontecilla, 20
Leaf area, concept of, 197
duration (LAD), 187
Index (LAI), 187
and photosynthetic rate, 193
and stomatal numbers, 191, 192
range and mean value for, 190
transpiration rate per, 195
types, and low TQ and low CWU, 196
Leaf beetles, 255
Leaf blast, 273
Leaf blight, 273, 278, 303
Leaf caterpillar, 257
Leaf characteristics, and photosynthetic efficiency, 198
Leaf elongation, on stress, 200, 201, 202
Leaf hopper, 244, 245, 255, 257, 268
Leaf miner, 256
Leaf rollers, 255, 256, 258, 259, 266, 268
Leaf rust disease, 289
Leaf spot, 273, 290, 360
Leaf spotting, and lesion, 297
Leaf water potential, 200
Leaf whorl application, 265
Leakey, C.L.A., 297
Leonard, W.H., 115
Lesotha, 116
Levitt, J., 184
Li, H.W., 26
Liang, E.M., 135
Lingappa, S., 264
Linge Gowda, B.K., 209, 217, 221
Linoleic acid content, 347, 348
Lisov, 107
Little millet, 3, 4, 11, 33, 35, 45, 46, 49, 55, 61, 154, 232, 237, 256, 258, 259, 284, 325
cropping system and production technology of, 225-27, 342
diseases in, 250
forage, 342, 344
hybrid varieties of, 66
shootfly incidence in, 260
Little millet improvement centre (Semiliguda), 225
Livestock feed, 4, 24, 136, 233, 341, 351
Lodging, resistance to, 103, 119, 138, 170, 175, 303
Lohani, S.N., 85
Lorenz, K., 335
Low transpiration quotient, in finger millet, 197
‘Ludlow, M.M., 200
“Luku Kachiaye” (finger millet), 118
Lunan, M., 120
“Lupoko” (finger millet), 117
Lysine content, 324, 327, 347, 348
Lyssov, B.H., 27
Madagaskar, 115
Madhya Pradesh, 9, 10, 11, 12, 35, 220, 222, 226, 229, 232, 246, 250, 252, 267, 342
Maharashtra, 7, 10, 11, 12, 25, 35, 229, 232, 246, 248, 249, 250, 252
Mahaweli project, 77
Mahishi, D.M., 61
Maize, 6, 15, 19, 20, 90, 132, 136, 149, 150, 161, 167, 293
 area and production of, in Uganda, 127, 128, 134
 area under, 133
 and finger millet cultivation, 275-76, 295, 305, 317
Maize ladybird, 303
Makerere University, 145, 297
Makoholi Experimental Station, 122, 165
Majid, M.A., 71, 271
Malathi, chari, 190
Malawi, 5, 115, 116, 117, 121, 122, 123, 125, 202
Male sterility, 14, 15, 61, 65, 101, 138-39, 357
Malanna, K.N., 60
Malleshi, N.G., 325, 327, 333, 334, 335, 361
Malt extracts, 209, 334, 336, 337, 358, 361
 barley and, 333, 334
 industry, 335
Management, of crops, 288-89
Manna see crabgrass
Mannujan, 71, 271
Manual of Cultivars of Chinese Foxtail Millet, 99, 102, 348
Manual of Cultivars of Proso Millet in China, 100
Manure, and fertilizers, 122, 215-16, 221, 302
Mara region (Tanzania), 315
Mariappan, 244
Marketing facilities, 38, 42, 211, 233, 296, 348
Martin, J.H., 115
"Marupi", 118
Masefield, G.B., 301
Mass selection breeding, 60
Matthiolus, P.A., 23
Matpos, 121, 125
May grass, 20
"Mawere" (finger millet), 117
Mbarara, 130
Mbeya (Tanzania), 155, 315
Mbimba, 157
Mbozi (Tanzania), 155
Mburu, C., 149, 305
McRae, W., 237, 242
Mehra, H.S., 67, 242
Melak Hail, M., 169, 311
Melaku, W., 169
Melanos disease, 109
Mekassa (Nazareth), 174, 175, 176
Mengesa, J.N., 163
Mengesa, M.H., 22, 118
Menkir, Abebe, 173
Mesophyll characteristics, 187
Michael, Wolde, 167
Micro-environment, in intercropping, 262
Miesso, 175
Millet flea beetle, 290
Millet, minor, 3
Millet stem borer, 290
Millet stem maggot, 290
Millet, small, in Andhra Pradesh 321-24
 area, production and field of, 38, 68, 150-52
 area under, 6, 33-34, 68, 237
 in Bangladesh, 271-73
 broadcasting of, 295
 cropping systems and production technology of, in India, 33-43, 209-33
 definition of, 3
 economic importance of, 93-94
 in Ethiopia, 167-72
 food value of rice and, 284-85
 gruel, 347
 improvement in, 13-15, 16
 insects pests and their management in, 255-69
 in Kenya, 149-54, 305-307
 malting characteristics of, 336
 outlook for, 231-33
 in Sri Lanka, 279-85
 state-wise area, production and yield of, 39-41
 in Zimbabwe, 161, 301-304
Millet Breeding Department of the Agricultural Research Institute for
Southeast Regions, 105
Millet Improvement Project, 214, 215
Millet straw, 281
Milling, 327-29, 337, 338
of proso millet, 331
Milling machinery, simple, 361
Mineral content, in small millets, 326
Minikit Demonstration, 42, 43
Ministry of Agriculture, of Kenya, 154
Ministry of Agriculture, of Malawi, 117
Ministry of Agriculture, of Nepal, 85
Ministry of Agriculture, of Uganda, 298
Minor cereals, 19-28
Mirid bugs, 296
Mishra, D., 238
Mitra, M., 242
Mixed cropping practices, 211, 218, 231, 233, 275
Mkindi, G.I., 316
Modi, J.D., 335
Moisture, conservation measures, 181, 217, 301
regimes, and stomatal number types, 194
requirement, 228
storage, 218
stress, 179, 184, 197, 217
Molina, G.J., 20
Mongolia, 289
Mongolian mole cricket, 290
Morrison, F.B., 343
Mottle streak virus, 244, 245, 246, 268
Mount Makulu Research Station, 118, 119
Mozambique, 5, 116, 123
germplasm collection and maintenance in, 117-118
M’shonga, S., 120
Mtopos, 165
'Mudde', 329
Mudgal, V.D., 343
Mukibi, J., 297
Mukuru, S.Z., 138
Multilocational testing sites, 145
Multiple crop index, 287
Multiple crossing, 107, 111, 362
Mundkur, B.B., 243, 252
Mung bean, 262
Muralikrishna, G., 335
Murky, 60
Murthi, T.K., 255, 258
Murthy, S.N.N., 214
Murty, B.R., 60
Mushonga, J.N., 163, 164
Mushthak Ali, T.M., 258
Mustard, and millet cropping, 277
Mutagens, 67, 170
Mutants, 67, 68
Mutation breeding, 67-68, 138-39, 170, 358
Muwatila (finger millet), 158
Muza, F.R., 161, 163, 164, 301, 363
Mwambene, R.O.F., 155, 315
Mylvganam, P., 282
Mysore state, 238, 243
Nabhan, G., 20
Nagarajan, C., 66
Nagaraju, 244, 245
Nageshchandra, B.K., 258, 266
Nai, H., 26
Nairobi, 154
Nakani (Tanzania), 155
Nongkotna, 60
Nandyal, 10, 11, 66, 223, 224
data, 9, 222
Nanjappo, H.V., 217
Narasimhan, H.J., 243
Natarajan, V.S., 258
National Academy of Sciences, U.S.A., 261
National Commission on Agriculture, 233
National Coordinated Varietal Trial, 83
National Institute of Nutrition, 33
National Institute of Research in Agronomy, 117
National Maize Development Programme (Rampur), 89
National Programme for Research and Improvement of Sorghum and Millets (PRISM), 306
National Rice Improvement Programme, (Nepal), 89
National Seed Board, 73
National Seed Companies, 104
National Wheat Improvement Programme, 89
Natural Resources of the Government of Malawi, 117
Navale, P.A., 60
"Navane", 344
see also Foxtail millet
Nayar, K.M.D., 67
NBPRG, 46
Nelson, L.A., 65
Nema, A.G., 252
Nematode disease, 290
Nepal, 175
cropping systems, production technology and pests and diseases of finger millets in, 275-78
finger millet improvement and genetic resources in, 85-92
transplanting in, 359
Net assimilation rate (NAR), 195, 200
Net returns, for millets, 281
Neuweller, E., 27
Niger, 13
Nigeria, 5, 115
Nilo-Hamitic tribe, 294
Nilotic tribe (Uganda), 294
Nkundi, grain yield in, 157
Noodles, preparation from millets, 332
Norman, D., 122
Northern system, of Uganda, 130
Nutrition value, in millets, 33, 209, 222, 303, 311, 312, 313, 324, 325, 326, 327, 332, 333, 338, 344, 347, 351, 361
of forage, 345, 350
NDRI (Bangalore), 342
Nyanza Province (Kenya), 150, 154
Nyasaland, Department of Agriculture, 120, 121, 122
Oats, 19
Objectives, of breeding, 59-60
of improvement of millets in Kenya, 150
of improvement of sorghum and millets in Tanzania, 155-56
O’Connell, J.K., 3
Oelke, E.A., 20
Oestry-Stidd, L.L., 26
Oil, and fat content, 347
Oilseeds, cropping of kodo millet with, 221
projects, 14
Okiror, M.A., 139
Oligogenes, 50
"On the farm and adaptive research" programme in Uganda, 133
Organic manures, 224, 359-60
Organomercurial compounds, seed treatment by 243, 252
for head smut disease, 252
Orissa, 7, 8, 11, 35, 225, 232, 250, 342
Oryokot, J.O.E., 298
"Osmatic active solutes," 181
Osmatic adjustments, 181
Osmatic stress, germinability, seeding stress and, 182
Pabna (Bangladesh), 271
"Paired row technique", 219
Pal, B.S., 242
Palaniswamy, A., 246
Paleg, L.G., 184
Pall, B.S., 252
Palmer, E., 19
Pancake, use of teff in, 311
Panicum accession, 55
Panivaragu see Proso millet
Panmure Experiment Station, 120
Pao, W.K., 26
Paramhans, S.V., 335
Parboiling, of millets, 332
Pareek, B.L., 264
Paspalum improvement centre (Dindori), 220
Passiourea, J.B., 184
Pastoral system, in Uganda, 130, 132
Pathogen, of blast, 238
of blight, 242
of head smut, 251
of rust in little millet, 250
Patil, J.A., 61
Patil, V.S., 217
Patnaik, H.B., 46
Patro, C.K., 217
Patwardhan, V.N., 123
Pearl grains, 332
production of, in Kenya, 150
Pearson, O.E., 135
Pedigree method, 60, 65, 119
Perumal, K.R., 197, 202
Pests and diseases, 60, 296-97, 360-61
in China, 287
in Ethiopia, 309, 311
in Nepal, 275, 278
in Sri Lanka, 279, 282-83
in Uganda, 293, 296-98
in Zimbabwe, 301, 303
Pesticides, 358, 359
Peters, L.V., 14, 89, 90, 212, 327
Philippines, 25, 250
Phillips, S.M., 22
Phosphorus content, 326, 341
Photoperiod sensitivity, 358
Photosensitivity, of high yielding genotypes, 205
Photosynthates, 197, 198, 202, 203
Photosynthetic rates, 193, 197
Physiological approaches, and finger millet improvement, 179-205
Physiological characteristics, and high WVE, 190, 195-96
Phyto-sanitary measures, 111
Pigeonpea, and finger millet cropping, 219
and little millet cropping, 226
and proso millet cropping, 228
Pink borer, 257, 268, 273
Pink stem borer, 278
Plant breeders, 15, 16
Plant, density, 229, 261, 288
height, 139, 143-45
pests, 264-67
process, and water use efficiency, 186-87, 190
protection, in SADCC countries, 123
spacing, 220, 261, 283
Plant Genetic Resource Centre, Ethiopia (PGRC/E), 169, 175
Plant Pathology Division (Nepal), 278
Planting method, 122, 189, 317
Planting time, 229, 258, 317
Plasticity, 197-98, 200
Plate grinder, 329
Pohl, R.W., 26
Pollen killing, 138
Pollination, 61, 65, 106
controlled, 59
hand, 138, 139
self-, 170
in teff flowers, 170
Polygenic variation, inducing, 67
Polyphenols, 361
Ponnuthurai, S., 77, 279
Poor farmers, millet consumption by, 38, 273, 344
Popping (puffing) characteristics, 333, 337, 361
Porridge, use of millets in, 283, 307, 323, 329
use of finger millet in, 123, 124, 129, 303, 304, 318, 352
use of teff in, 311
Porteres, R., 21
Potential, of small millets, 231, 325
Poultry feed, millets as, 283
Prasad, T.G., 179
Price, of agricultural commodities, 163
Priority areas, 56
Processing, of millets, 322-23, 327, 351, 357
for food and industrial use, 325-38
Procurement price, of millets, 8
Production, of small millets, 6, 7, 33-42, 68, 149, 321-22
in Bangladesh, 71-72, 271, 272
in China, 287, 288-89
in Ethiopia, 167-68
in India, 209
in Kenya, 149, 150-52
need for increasing, 38, 42
in Nepal, 85-88, 275, 278
in Sri Lanka, 77, 79, 80, 279-85
in Zimbabwe, 161
Production technology, 121-22
 in Ethiopia, 309-11
 in India, 209-33
 in Kenya, 306-307
 in Uganda, 293, 294-96
 in Zimbabwe, 301-303
Productivity, of small millets in India, 33-42, 106, 107-109, 161, 211
canopy transpiration and, 189
crop duration and, 204
determinants of, 187
photosynthetic rate and, 197
and utilization efficiency of stem reserves, 202
yield, 187
Project Implementation of Regional Research in Cotton, Oilseeds and Millets (PIRRCOM), 65
Prolamine, of finger millet, 351
Proso millet, 3, 4, 10-11, 12, 23, 33, 35, 45, 46, 55, 59, 71, 72, 73, 77, 79, 92, 93, 115, 149, 150, 154, 161, 232, 237, 257, 258, 259, 268, 284, 307, 321, 325, 331
in Bangladesh, 271, 272
in China, 97, 347
chemical composition and digestibility coefficient of, 343
cropping system and production technology of, 227-28
forage of, 344-45
genetic resources of, in China, 99-100
germlasm characters in, 75, 81
hybrid varieties of, 66
improvement programme (Dholi), 227
protein content in, 209
shootfly incidence in, 260
V 27, 60
V 306, 60
yield trial of, 75
Protein content, 124, 283, 324, 325, 326, 327, 341, 347, 348, 351
 crude, 344
 in foxtail millet, 53
 in proso millet, 209
 Protogynous millets, 61
 Protogyny, 358
 Punjab, 222
 Pureline selection, 60-61, 63-64, 103, 170
 of finger millet, 62
 Purseglove, J.W., 4, 5, 285, 351
 Pushpamma, P., 321, 361, 362
 Putterudraiah, M., 265
 Qinghai Province, 98
 Qualitative photosensitive genotypes, 205
 Qualitative short day plants, 205
 Quela, 296
 Quela bird, 303
 Rabi crop, 23
 Race, compacta, 22
 compactum, 27
 coracana, 22
 elongata, 22
 indica, 27
 maxima, 26, 27
 moheria, 26
 ovatum, 27
 patentissimum, 27
 plana, 22
 vulgaris, 22, 23
 Rachie, K.O., 14, 89, 90, 115, 212, 222, 327
 Raghavendra, 243
 Raghuhanshi, R.K., 262
 Ragi, 7, 71
germlasm, 50
hybridization of, 56
mottleneck infection on, 246
streak virus infection on, 247
virus of, and its leaf hopper vector population, 245
see also finger millet
 Rai, B., 227, 228
 Rainfall conditions, 14, 59, 79, 81, 150, 161, 180, 181, 212, 229, 231, 255,
General Index 383

279, 280, 295, 310, 321
finger millet under, 216, 218, 341
and productivity, 38, 179-205
strategy under, 184
and temperature, 80, 82
in Uganda, 127, 130
Raishan, 23, 24
Raj, S.M., 61
Rajashekara, B.G., 60, 182, 325
Rajasthan, 25
Ranchi, 226
Ranganatha, A.R.G., 67
Rangpur district (Bangladesh), 271
Rao, S. Appa, 115, 117, 118, 163, 164
Rao, D.G., 244
Rao, G.M., 225
Rao, K.V.R., 61
Rao, Prasada K.E., 22, 27, 28
Rao, T.M., 67
Rao, V.R., 61, 118
Rao, S. Venkat, 334
Rapid generation advancement (RGA), 102
Rapoko, use of, in brewing, 124
Rapokobug, 303
Rath, G.C., 238
Raveendran, T.S., 66, 67
Ray, S.N., 343
Raymond, W.D., 115
Rawat, R.R., 262
Razvi, S.M., 33
Recombination breeding, 65-67
Red eye bee, 290
Red leaf virus disease, 290
Reddy, B.G.S., 65
Reddy, V.C., 217
Regmi, P.P., 92
Rogor spraying, 245
Rejuvenation, 52
Religious practices, use of finger millet in, 135, 137, 149
Report of Breeding and Varietal Improvement Discussion Group, 357
Report of Food Uses Discussion Group, 361
Russia, 249, 325, 360
Rust disease, in foxtail millet, 248
in little millet, 250
in kodo millet, 251
Revanda, 115
Rye, 19
SADCC countries, 116, 120, 122
finger millet research in, 115-25
ICRISAT sorghum and millet improvement project, 125
Safflower (sunflower), and teff cropping, 309
Safeeula, 243
Sakya, Deep Man, 275
Saluchodi, 60
Same, 225, 342
see also little millet
Sampath, S.R., 341, 343, 344
Sampath, T.V., 33
Sanguineum, 105
Sargati, 323
Sarmezy, A.A.V., 119, 122
Sashidhar, V.R., 50, 179, 190, 197, 202
Sastry, K.S.K., 182, 187, 197
Sattar, A., 251
Sauwi, 20
Sawa, 3, 4, 24-25, 28, 92
and Japanese millet, 25
see also Barnyard millet
Screening trial, of breeding material, 145
of finger millet, 143-45
of local and exotic varieties, 143
Scrobic millet see kodo millet
Seeds, bed preparation, 309-10
broadcasting of, 211, 216, 225, 229, 280, 298, 302
characteristics of, 181
coat, of finger millet, 335
-cum-fertilizer drill, 216
germination, 227
improved varieties of, 38, 42, 146
increase in production of, 49, 52
106, 120
oil content in, 51, 53-54
production and distribution system
in Uganda, 133
protein content in, 358
quality, 297-98
rate, 272, 295, 310, 317
solute potential of, 182
steeping, for smut control, 252
viability, 106
yield, 306
Seedborne disease, 252
of head smut, 251
fungal smut in, 249
Seeding, area, 95
dry, 220, 302
experiments in SADCC countries, 122
method for barnyard millet, 229-30
time. 220, 288, 290
Seedling, 181, 214
germination of, 180-82
pests, 258-64
thinning of, 288
Seed treatment, 251, 252, 283, 290, 359
for blight, 242
for downy mildew, 243, 250
for shootfly, 263
Seetharam, A., 45, 46, 50, 51, 65, 212, 237, 357, 363
Selection, of finger millet accessions, 175
for grain quality, 109-10
of parent materials, 107
Selenium content, 348
Selvaraj, S., 258
Semiliguda, 66, 225, 226, 227
Semolina, 329
Sen, K.C., 343
Seneviratne, S.T., 283
Senethinathan, A., 281
Serere, Research Station, 14, 135, 137, 145, 297, 298
early maturing finger millet trials at, 140-42
Sesame cultivation, 280
Sesamia sp., 297
Seshu Reddy, K.V., 261
Setarin, 350
Seyfu K., 350
Shama kaon barnyard millet, 71
Shandong Provinces, 97, 103
Shankara, R., 329
Shankaran, S., 217
Shanxi Province, 103, 288, 289
Sharma, D.D., 258
Sheeth blight, 273
Shekavat, G.S., 261
Sherchan, Kishore, 85
Shershta, K.B., 232
Shifting cultivation, 122, 155, 221
 forest fallow (chena) system, 279
Shirole, S.M., 258
Shivaramaiah, M.T., 344
Shivshankar, G., 67
Shootfly, 60, 220, 255, 256, 257, 258, 259, 261-64, 268, 360
 biological control of, 264
 chemical control of, 262-63
 planting date and yield of kodo millet and incidence of, 260
 resistance to, 259
Short duration crops, 225, 325
Shrestha, K.B., 332
Sikkm, 25
Silage, 342
Simple line regression, of shoot weight, 188
 between shoot dry matter and yield, 188
Singh, B.P., 246
Singh, D.N., 33
Singh, H.B., 24
Singh, K.M., 89, 262
Singh, R.M., 276
Singh, R.N., 262
Singh, V.B., 261
Singh, V.S., 258
Single-ear selection, 102
Single plant selection, 56, 358
Slatyer, R.O., 190
Slump, P., 332
Small, W., 123
Small farmers, 42
Small millet centres, 255
Small millets, developed through pure line selection, 63-64
 as forage, 341-45
 nutritive contents in, 326
 processing of, for food and industrial uses, 325-38
 see also millets, small
Smut disease, 60, 243-44, 283
 in barnyard millets, 252
 control of, 243
 in foxtail millet, 248-49
 resistance to, 110, 111
Socio-economic constraints, 38
Soil, 79, 209, 212, 225
 characteristics, 181
 borne disease, of downy/mildew, 249
 borne disease, of wilt, 242
 fertility, 88
 laterite, for finger millets germination, 184
 moisture, 42, 181, 186, 288
 preparation, 212, 317
 treatment, to shootfly damage, 262
Soil types, alluvial and black, 211
 black cotton, 222
 red and laterite, 211
Somalia, 115
Sorghum, 5, 13, 15, 19, 130, 132, 133, 136, 150, 155, 262, 294, 305, 315, 321
 chemical composition of, 158
 and finger millet intercropping, 295, 305
 insect damage to, 322
 and millet improvement programme, 116, 155
 programme in Ethiopia, 16
 in Uganda, 127, 128, 134
Sorghum shootfly, 297
South Arabia, 171
Southern African Development Co-
 ordination Conference (SADCC), 115
Sowing, by broadcasting, 306
Sowing time, 233, 295, 310, 359
 and method for finger millet, 212-14
 and plant density for little millet, 225-26
General Index

for foxtail millet, 222-23
for kodo millet, 220
for proso millet, 227
tools for, 288
Soybean, and finger millet crops, 218
and raddish intercropping, 262
Spacing, of rows, 215, 295
and yield, 229
and plant population of finger millets, 214-15
Spikelets, 267
Spring millet, 287, 289
Squire, G.R., 187
Sreekantaradhya, R., 68
Sri Lanka, 250
cropping system and production technology, pests and diseases and utilization of small millets in, 279-85
genetic resources and breeding of small millets in, 77-84
millet production in, 78
rice production in, 78
yield of finger millet in, 84
Srivastava, D.P., 61, 65
Stalk borers, 297
Stapf, O., 23
Staple food, 229, 341, 342
Starch, content in strew, 344
production for industries, 335
State Agricultural Universities, 211
State Level Training, 42, 43
State-wise area, production and yield, of finger millet, 36-37
of small millets, 39-41
State-wise recommendation, for finger millet cropping, 213
for varieties of small millets, 232
Stem borer, 255, 256, 360
biological control of, 265, 290
chemical control of, 264-65
cultural control of, 265
damage due to, 282
on finger millet, 264-65, 269
pink, 257
sorghum, 257
white, 257
Stem fly, 273
Stem reserves, 202
Sterility, inducing, 68
see also Male sterility
Stewart, R.B., 311
Stink bug, 256
Stomatal behaviour, 187, 195, 196
Stomatal frequency, 191
Stomatal number, 190, 191, 192
Storage, of millets, 68, 118, 129, 296, 318, 322, 361
of finger millets, 174
of kodo millets, 220
cold, 154
cold, for germplasm, 164
Straw, 342, 344, 347, 349, 362
Streak virus, 244, 245, 303
on ragi plants, 247
Stress, avoidance techniques for, 181, 182
effect, 180
induced, and genotype duration, 204
injury, 179
resistance to, 100
Striger, 123
Stripe borer, 273
Subsistence needs, 275, 293
for farmers, 321
Sucrose, 182
Sudan, 115
Sumbawanga (Tanzania), 155
Sunnhemp, 280
Sundaresh, H.N., 217
Sundararaman, 248
Supply, of millets, 48
Supply, of millet germplasm, 48
Surface grasshopper, 257
Swaminath, M.H., 65
Swaminathan, M., 333, 334
Swaziland, 115, 116
Sweet potato, millets and, 294
and finger millet, 352
Switzerland, 26
Symptoms, of blast disease, 238, 246
of downy mildew, 243, 249
of head smut, 251
of mottle streak virus, 244
of rust disease, 248, 250, 251
of smut, 243, 248-49
of wilt, 242
Syrphid fly, 267

Tadese, E., 169, 170, 171, 311, 314
Tamil Nadu, 7, 9, 10, 11, 12, 25, 34, 35, 115, 222, 223, 229, 232, 243, 246, 248, 249, 250, 252
Tamulonis, John, 89, 276
Tanzania, 5, 115, 116, 120, 123, 125
breeding and varietal improvement in, 164, 166
cropping systems and management of finger millet in, 315-18
finger millet research in, 155-59
genetic resources in, 156, 157
germplasm collection and maintenance in, 118, 163-64
varietal improvement in, 156
Tareke, B., 170, 311
TARO, 156
Tarspot, disease, 123, 297
Technology, 60, 136, 298
improved, 109
transfer of, 360
Teff, 3, 5, 6, 115, 150, 169, 284, 309-11, 325
accession of, 169
agronomic characters of, 172
area and production trend of, 167-69
breeding programme of, 171
in Ethiopia, 167-72
germplasm, 169
improved varieties of, 172
in Kenya, 309
nutritive value of, 311, 312, 313
Telial stage, of rust disease, 251
Teliosori stage, of fungus, 248
Teliospores, 250
Terai region, 276, 278
Termites, 255, 257, 268
Teso system, in Uganda, 130
Thakurgaon Research Station, 72, 73
Tharanathan, R.N., 335
Thermo-periodism, response of finger millet to, 204
Thiamin content, 326
Thirumalachar, M.J., 243
Thomas, D.G., 129, 249, 299
Threshing, 306
Tigrai (Ethiopia), 173
Tillering, 217, 229, 342
for finger millet, 212
and moisture stress, 217
plasticity in, 198, 200
Tillers, 198, 199, 214, 215, 223, 258
Tisserant, R.P.Ch., 24
Tissue culture, 16
Topographical Survey Branch (Nepal), 86
Traditional practices, 233
Transpiration quotient (TQ), 187, 190, 195, 196
strategy under stress conditions, 184
186-87, 190
Transplanting, 14, 281, 302, 359
of finger millet, 214, 275-76
Tribals, 38, 220
Bantu, 129, 149, 294
and social grouping, 136
of Uganda, 294
Tribe, A.J., 297
True fonio, 21
Twirl method, 106

Udumalpet ragi, 60
Ujipa (Tanzania), 156, 315, 316, 318
Ugali, 352
Uganda, 5, 22, 115, 121, 123
area and production of cereals in, 127, 128
area under millets, 6
cropping systems, production techniques and pests and diseases of finger millets in, 293-99
finger millet improvement in, 137-46
germplasm resources in, 135
processing and utilization of finger millet in, 351-53
small millets in, 127-36
Uganda Seed Project, 146, 298
Ukrainian region, 107, 111
Ulvund, K.A., 316
Underground water, 279, 281
Unger, 169
University of Edurado, 117
“Urbanization”, of food habits, 68
Urd bean, 262
Uredia spores, 250
stage of fungus, 248
stage of rust in kodo millet, 251
USAID, 91
Usman, S., 264, 265
Utilization, of finger millet, 88-89, 299, 303-304
of finger millets in Uganda, 351, 352-53
and forage use, in Kenya, 309, 311-12
of germplasm, 55-56
of small millets in Andhra Pradesh, 323
of small millets in Bangladesh, 271, 273
of small millets in China, 347-50
of small millets in Kenya, 305, 307
of small millets in Sri Lanka, 279, 283
of small millets in Zimbabwe, 301, 303-304
Uttar Pradesh, 7, 10, 11, 12, 25, 35, 222, 229, 232, 252, 342
Uva provinces (Sri Lanka), 279
Uyole (Tanzania), 155, 156, 157
Van Zeist, W., 26
“Varagu”, 344
see also kodo millet
Varietal evaluation, of foxtail millet in China, 103
Varietal improvement, 119-20
in Ethiopia, 170-71
in Tanzania, 156, 164, 166
Varieties, of finger millet, for different regions and seasons, 213
medium duration, 214
short duration, 212
Variety Trial Officers, 145
Vavilov, 169
Veldkamp, J.F., 23
Venkataramayan, S.V., 238, 243
Venkatalarayan, S., 334
Venkateshwarlu, M.S., 11, 14
Vinegar, use of millets in, 347
Viral disease, 244-46, 360
Viral streak, 250
Vishnu-Mittre, 22, 24, 26
Vishwanath, H.R., 200
Viswanath, S., 237, 244
Vitamin contents, 348
Volga region (USSR), 105, 107
V27 proso millet, 60
V 306 proso millet, 60
Wallace, G.S., 123
Wallace, M., 123
Wang, C.S., 249
Wankhede, D.B., 335
Warriar, Achyutha U.B., 27
Watanabe, N., 24
Water, imbibition by seeds, 181, 182
harvesting and utilization efficiency, 185
-holding capacity of soil, 181
logging, 168
loss and assimilation, 187
management for finger millet, 217-18
requirement, 4, 10, 212
Watersheds, integrated, 42
Water use efficiency (WUE), 184
Weaving food, malted, 334, 335
Weaver birds, 290
Weed control, 212, 217, 302, 359
Weed problems, 298-99, 359
Weeding, 121, 231, 296, 310, 317
management for barnyard millets, 23, 230
management for finger millets, 216-17
management for kodo millets, 262
and tillage practices, 122
Weeping lovegrass, 314
Weevils, 168
Weihe, P.D., 123
Wellega (Ethiopia), 173
General Index

Werner, H., 23, 26
Werth, E., 23, 26
West Africa, 5, 21
West Agricultural Research Station (WARS), 154
Western Uganda, 293, 295
Wheat, 19, 167
chemical composition of, 158
Whingwiri, E.E., 122
White grub, 257
White, J.S., 283
Whorl application, 265
Wilt diseases, 242-43, 278
control of, 242-43
Women, weeding work done by, 296
WUE, 187
physiological characteristics and, 190, 195-96

Yabuno, T., 25
Yadav, A., 61, 65
Yaraguntaiah, R.C., 244
Yellow sugarcane borer, 290
Yield, of millets, 7, 9, 13, 33, 34, 35, 108, 215, 280
with improved technology in Bangladesh, 71, 72, 74, 272
of barnyard, 230
of different biotypes, 108
of finger millet, 157, 161, 175, 179, 214, 233, 275, 276, 301, 318
of finger millet by intercropping and fertility management, 218, 219
of foxtail millet, 96, 222, 223, 225
of kodo millet, 220, 260
loss due to blight disease, 242
loss due to shootfly, 258
loss due to diseases and pests, 289
parameters, in different stomatal numbers under moisture regimes, 194
potential, due to enhanced mean ear weight, 200
potential of finger millet, 295
spacing and, 229
in Sri Lanka, 84
Zake, V.M., 127, 133, 137, 139
Zambia, 5, 115, 116, 122, 125
area and production of finger millet in, 116
varietal improvement in, 119
Zimbabwe, 5, 115, 116, 122, 125, 175
area under maize, sorghum, finger millet and pearl millet in, 117
cropping systems, production technology, pests and diseases and utilization of small millets, 301-304
finger millet cropping in, 121, 162
genetic resources and breeding of small millets in, 161-65
germplasm collection and maintenance in, 118
natural regions of, 162
position of grains in, 124
varietal improvement in, 119-20
Zolotukhin, E.N., 105
INDEX OF SCIENTIFIC NAMES

Acrida exalta Wlk., 256, 257
Amaranthus spp., 281
A. paniculatus, 325
Amsacta albistriga, 257
Anomala dimidiata Burn., 257
Apanteles flavipes, 265, 266
 Aphelenchoides besseyi Christic, 290
Aphis spp., 282
Atherigona spp., 258, 297
A. atripalpis M., 256
A. biseta Karl, 290
A. falcata Thom., 257
A. milliaceae M., 256, 257, 273
A. simplex Thom., 256
Azospirillum, 226, 228, 263
A. brasilense, 216, 223, 227
A. effect of, 216, 217
A. seed treatment, 221
Azotobacter, 263
A. chroococcum, treatment with, 224

Brachiaria deflexa, 5, 21
B. ramosa (L), 26, 46
Brachytrypes sp., 257
Bracon chinensis, 265
Bromus mango (Desv.), 20
B. unioloides, 20

Coccocia sp., 265
C. epicyrta, Meur, 257
Camponotus compressus, 268
C. chinai, 268
Cenchrus biflorus Roxb, 21
Cercospora fusimaculans Atk, 133
Chaetocnema sp., 256

C. basalis, 256
C. ingenus, 290
Chihomones sexmaculata, 267
Chilo partellus, Swim., 256, 257, 261
Chilstrate infuscattellus, Snellen, 290
Chrotogonus sp., 256, 257, 278, 296
Chrysopa basalis, 267
Cicadulina bipunctella bipunctella, 244, 268
C. bipunctella bipunctella Matsumra, 257
C. chinai, 244, 257
Coix lacryma-jobi L., 25, 26, 93, 325
Crotolaria uncea L., 280
Cryptoblabes, 266
C. guidiella M., 257
Curvalaria sp., 273
Cylindrosporium leaf spot, 297

Dactyloctaenium aegyptium, 246
Digitaria cruciata, 23
D. exilis, 5, 21, 167, 325
D. exilis iburna, 3
D. iburna, 5
D. iburna Stapf, 21
D. maginata, 243
D. sanguinalis (L), 23
Dolycoris indicus, Stal., 256
Drechslera sp., 273
D. nodulosum, 241, 242

Echinochloa, 24
E. colona (L) 4, 24, 33, 45, 71, 92, 167, 229, 237, 325
E. crusgalli (L), 4, 24, 25
E. frumentacea, 3, 45, 93, 229, 237, 242
E. oryzoides (Ard), 24
Eleusines, 119, 212
E. africana, 119, 122, 135, 297, 298
E. coracana (L), 3, 21, 33, 45, 77, 89, 119, 137, 167, 173, 237, 315, 325
E. coracana Gaertn., 71, 85, 93, 161
E. coracana subsp. africana, 4, 22
E. indica (L), 118, 135, 154, 242, 243, 302, 341
E. multiflora, 118
Ephelis, 250
Epilachna simitis, 303
Eragrostis curvula, 314
E. pectinacea, 243
E. pilosa, 21, 171
E. tef, 3, 21, 167, 325
Eublemma sp., 266
E. silicula, Swin., 257
Euproctis sp., 257
Gonitius sp., 266
Gryllotalpa africana Palisot et Bouavois, 290
G. unispina Saussure, 290
Hecalus sp., 256
Heliotis, 266
H. armigera Hb., 257
Helminthosporium sp., 90, 273
H. leaf spot, 297
H. nodulosum, 278
H. setariae Sawada, 290
Holotrichia seticollis Mos, 257
Hysteroneura setariae, Them., 257, 266
Ischnodemus congoensis, 303
Kolla mimica, Dist., 256
Leptocorisa acuta, 256
Liorhyssus hyalinus Fabricius, 290
Madurasia sp., 256
Mampoua bipunctella Ragonot, 290
Marasnia trapezalis Wlk., 256, 268
Melanopsichium eleusinis, 243
Microtermes sp., 257, 268
Mythimna separata, Wlk., 256, 278, 290
Nezara viridula, 256
Odontotermes sp., 257, 268
Opatrum sabulos Linnaeus, 290
Orseolia, sp., 256, 267
Oryza barthii A. Chev., 21
O. glaberrima Stendel, 21
Ostrinia furnacalis Guenee, 290
Panicum spp., 3
P. maximum, 200
P. miliaceum (L), 3, 23, 26, 27, 33, 45, 71, 77, 92, 93, 105, 115, 167, 227, 237, 242, 321, 325
P. miliare, 45, 225, 237, 325, 342
P. psilopodium Trin., 28
P. sonorum Beal, 20
P. sumatrense, 3, 27, 33, 45, 93, 167, 225, 237
Pennisetum, 221
P. scrobiculatum, 3, 21, 25, 33, 45, 71, 85, 93, 167, 220, 237, 321, 325, 344
Pennisetum, 3, 119
P. americanum (L.), 93, 115
P. typhoides, 315
Phalaris caroliniana Walt, 20
Phanerotoma sp., 266
Phoma sp., Fusarium sp., 273
Phyllachora eleusinis, 123, 297
Pseudomonas setariae (Okabe) Savalesum, 289
Puccinia striiformis Ellis and Barth, 251
Pyricularia sp., 50, 90, 123, 278
P. grisea, 237, 297
P. setariae, 246, 273
Pyricularia setariae Nishik, 289
Saluria inficita Wlk., 257
Sclerophthora macrospora, 243
S. graminicola, 249
S. graminicola Sacc. Schrect, 290
Index of Scientific Names

Sclerotium rolfsii, 242, 273, 278
 S. wilt, 297
Sesamia inferens, Wlk., 256, 257, 261, 268, 278
Sesamum indicum, 280
Setaria italica, 3, 23, 26, 33, 45, 71, 77, 92, 93, 115, 167, 237, 242, 246, 325, 344
 S. geniculata (Lam) P. Beauv, 20
 S. pumila (Poir), 26, 27
 S. viridis, 93, 290
Sima sp. nr longiceps, Floral, 256
Solenopsis germinata, 268
Sorghum bicolor, 315
 S. vulgare, 242
Sorosporium paspali, 250
Spodoptera exempta, 296, 303
 S. marutia, 282
Stenobracon sp., 265
Stipagrostis pungens (Desf.), 21
Striga asiatica, 301
 S. hermonthica, 123
Taylorilygus sp., 296
Tetraneura nigriabdominalis, 257, 268
Uredo paspali-scrobiculata, 251
Uromyces linearis, 250
 U. setariae italica, 248
 U. setariae italica (Peit) Yoshina, 289
Ustilago carameri, 248
 U. carameri Koern, 290
 U. crus-galli, 252
 U. panici-frumentacei, 252
 U. paradona, 252
Vigna mungo, 262
 V. radiata, 262
Zea mays L., 20, 242
Zizania aquatica, 20
Zonocerus elegans, 296